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Abstract :  
 

The aim of this article is to show the interest the wavelet transforms in improving the sensitivity of the 

scalar indicators (kurtosis and crest factor) in the context of conditional maintenance by vibratory 

analysis of rotating machinery. When the bearing is damaged, the appearance of a crack on the gear 

tooth disturbs signal. This change is due to the presence of periodic pulses. Nevertheless, the presence 

of noise induced by the random excitation can have an inuence on the values of these time indicators. 

Denoising of these signals by wavelet transform allows improve the sensitivity of these indicators and 

to increase the reliability of diagnosis. To simulate the signal to be analyzed, we voluntarily 

introduced a default. We selected wavelet Daubchies type that is well suited to this type of problem. 

The purpose is to try to master the various parameters related to the wavelet analysis for reliable and 

inexpensive detection, namely, the order of the wavelet and the level of decomposition. The approach 

is to observe the kurtosis and the crest factor for several wavelet orders depending on the gravity of 

the fault. 
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1 Introduction  
 

In the field of prognostics and health monitoring, different methods are commonly employed for faulty 

bearing detection. A faulty bearing will typically create periodic, impulsive vibrations, which are 

proportional to rotational speed. These vibrations may be recorded and analyzed to reveal the nature of 

a given fault. Rolling element bearing is a major source of failure in electromechanical systems. 

Recently, the use of diagnostics and prognostics methodologies assisted by artificial intelligence tools 

such as artificial neural networks, support vector ma-chines etc. have increased for assessing the health 

of the rolling element bearings. The effectiveness of these approaches largely depends upon the quality 

of features extracted from the bearing signals. Keeping this in mind, the authors have presented the 

various signal processing methods applied to the fault diagnosis of rolling element bearings with the 

objective of giving an opportunity to the examiners to decide and select the best possible signal 
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analysis method as well as the excellent defect representative features for future application in the 

prognostic approaches. In their bibliographical review Rai [1], first quotes some of the condition 

monitoring tools used for rolling element bearings and then the importance of signal processing 

methods in diagnosis and prognosis of rolling element bearings. Next, it discusses the various signal 

processing methods and their diagnostic capabilities by dividing them into three stages: first stage 

corresponding to the articles published before the year 2001, second stage refers to the articles 

published during the period 2001-2010 and lastly the third stage pertains to the articles issued during 

the year 2011 to till date. To focus more on the recent developments in the signal processing methods, 

the third stage has been partitioned further into several sections depending upon the methodology of 

signal processing. 

Their relative advantages and disadvantages have been discussed with regard to the fault diagnosis of 

rolling element bearings. The wavelet transform outper-forms the Short-Time Fourier Transform 

(STFT) in terms of temporal resolution, which allows a greater exibility in the analysis of non-

stationary signals. Rioul [2] has been also demonstrated that wavelet denoising requires no knowledge 

of the noise level in order to optimally elimi-nate Donoho [3]. Much researches have been conducted 

to focus on the envelope analysis from the signal located in certain specific frequency bandwidth. 

Jimnez [4] used Hilbert and Wavelet transforms to make the fault diagnosis easier. In 2008, 

Chiementin [5] suggests a new form of wavelet, which is adapted to shock response, and a 

methodology for its use in which the parameters are determined automatically.  Djebala [6], [7] 

presents a de-noising method of the measured signals is presented. Based on the optimization of 

wavelet multi-resolution analysis, it uses the kurtosis as an optimization and evaluation criterion, 

several parameters were then selected. The experimental results show the validity of this method 

within the detection of several defects simulated on ball bearings. 

In 2009, Wang [8] proposes an improved combi-nation of the Hilbert and wavelet transforms to 

identify early bearing fault signatures. Real rail vehicle bearing and motor bearing data were used to 

validate the proposed method. A traditional combination of Hilbert and wavelet transforms was 

employed for comparison purpose. 

An indicator to evaluate fault detection capabili-ty of methods was developed in this research. Tang 

[9] proposes an improved method that combines the energy operator demodulation and the dual 

reconstruction scheme in wavelet packet transform. A fan bearing test rig is established and the 

vibration signals collected from this test rig are used to validate the proposed method. The analysis 

results show that the proposed method has a good frequency resolution. Kulkarni [10], presents a 

methodology for fault diagnosis of rolling element bearings based on discrete wavelet transform 

(DWT) and wavelet packet transform (WPT). Further De-noising technique based on wavelet analysis 

was applied. The results show that wave-let packet node energy coefficients are sensitive to the faults 

in the bearing. The feasibility of the wavelet packet node energy coefficients for fault identification as 

an index representing the health condition of a bearing is established through this study. 

The wavelet de-noising technique with wavelet based function has been used in the work of El-Tobi 

[11] for bearing fault detection. The applications of the wavelet de-noising show that the fault pulses 

in time-domain of the de-noised signals are easily to be detected as a result of removing the covering 

noise, which is not possible through the time-domain analysis of the original signal. Further more, the 

reciprocal period which matches the bearing fault frequency can be easily detected without further 

analysis by FFT-Spectrum. 

The aim of this article is to show the interest of wavelet transform for the improvement of the 

sensitivity of scalar indicators (crest factor, kurtosis) within the application of conditional maintenance 

by vibratory analysis. 
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2 Numerically Simulated Signal 
 

The main source of the vibration in the shaft bearing system is the presence of the defect on the 

interacting bearing components. Many research papers have been published in last few decades on the 

detection of the defects in rolling element bearings. The dynamic models of rolling element bearing 

with local and distributed defects have been reviewed in Shaha [12]. The numerically simulated signal 

that has been chosen is similar to the signal used in Sheen [13] with added noise. Its mathematic 

formulation is given as: 
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Where β the structural damping characteristic frequency, Fm is the bearing fault frequency (BPFO 

equal to 100 Hz), A = 1, and B = 1. f1 and f2 are the two resonant frequencies (equal to 2000 Hz and 

3000 Hz, respectively). A normally distributed random signal with 0 mean and standard deviation of 

0.07 is added into the simulated signal. The signal is shown in Fig. 1. 

Time-frequency techniques show potential for detecting bearing problems in more complex 

rotating machines where the SNR is low and many frequency components are present, as in the 

common occurrence of multiple defects Bhende [14]. 
 

3 Optimization of multi-resolution wavelet analysis 

 

For a long time FFT was the tool of choice to address this problem, except that it was always 

di_cult to avoid altering the signal by reducing a large amount of  noise.  

 

 

Figure 1. Spectrogram of the simulated signal 

 

Methods based on thresholding wavelet transform have emerged to _ll the gaps Donoho [15], [16], 

Johnstone [17] and Chang [18]. Their strength resides in their ease of implementation and their 

effectiveness. Therefore the main idea is to remove the small coefficients responsible for the noise in 

the signal. The denoising of the noisy signal using wavelet transform is obtained in three basic steps 

Kumar [19]: 

(1) Signal decomposition: Signal is decomposed into j level of wavelet transform and coefficients 
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are calculated. 

(2) Thresholding: Then the threshold is selected and the detail parts through wavelet transform are 

compared with the threshold and the detail parts are set to zero if they are less than the threshold. 

(3) Signal reconstruction : Finally the signal is reconstructed using the original approximation 

coefficients of level j and modified detail coefficients. 

Soft and Hard thresholding In the literature there are two types of thresholding techniques 

applicable to signal processing which are Hard thresholding and Soft thresholding. Hard thresholding 

can be described as the usual process of setting to zero the elements whose absolute values are lower 

than the threshold. Soft thresholding is an extension of hard thresholding, first setting to zero the 

elements whose absolute values are lower than the threshold, and then shrinking the nonzero 

coefficients towards zero. The drawbacks of the Hard and Soft thresholding are that the Hard threshold 

is not continuous at threshold where as the Soft threshold is not differentiable at this value; a pre-

requisite for any optimization problem Kulkarni [10]. If denotes _ the given threshold, the Soft 

threshold can be defined by Johnstone [17]: 
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and Hard thresholding can be written as: 
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With the above thresholding methods in place the obvious question is how to set an appropriate 

value of . A widely adopted approach, introduced by Donoho [15], is to use the universal threshold. 

For a series of length N the universal threshold is given by: 

)N(log2  (5) 

 

where  is the threshold value, N is the length of the noisy signal. In threshold selection, we should 

not ignore the detail coefficients in every level that probably inuence the robustness of the threshold 

estimating. So we have to rescale a selected threshold in some level. In this paper, the threshold is 

dependent on the detail coefficients at every level. The standard deviation  is thus estimated by: 
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3.1 Methodology for performance evaluation 

 
To evaluate the performance of our approach several assessment tests such as Signal to Noise Ratio 

(abbreviated SNR) is employed. SNR is a measure used in science and engineering that compares the 

level of a desired signal to the level of background noise. It is defined as the ratio of signal power to 

the noise power, often expressed in decibels. The global SNR values are determined by the following 

equation: 
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3.2 The choice of analyzing wavelet 

 

Figure 2. SNR vs different wavelet orders 

 

The study of the choice of analyzing wavelet will be conducted on the basis of a test of several 

wavelets. This will be on the study of SNR between the original signal and the signal after 

reconstruction. The analyzing wavelet chosen will be the one who will present the value of the highest 

SNR. We apply Mallat algorithm multiresolution analysis using the analyzing wavelet for different 

orders. The most analysands wavelets used are Daubechies (db) and Symelet (sym). White Gaussian 

noise is added to the simulated signals. The noisy signal is represented in Fig.1, for SNR value. Firstly, 

this signal is denoised using wavelet transform with the methods of soft and hard thresholding. For 

comparison with the same conditions, the parameters of the wavelet transform are set for both cases. 

The wavelet decomposition family is the db9 and level 6 is selected. 

In order to illustrate performance of the proposed threshold selection, the signal is corrupted by 

noise at different level of SNR. These noisy signals are denoised using wavelet transform with 

universal thresholds. SNR out is used as performance measure for denoising. Fig.2 shows that 

practically there is no appreciable difference between the two wavelet family and the Hard 

thresholding method clearly has the best performance for these white noise conditions. The output 

SNR of the Hard thresholding method shows the SNR improvement as compared with soft 

thresholding. 

 
Figure 3. SNR vs different noisy signal                       

(Soft thresholding) 

 
Figure 4. SNR vs different noisy Signal                     

(hard thresholding) 
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3.3 Statistical Parameters 

 
To obtain useful information from the time-domain acoustic and vibration signals various statistical 

techniques have been developed over the years. One of the parameters, namely, the crest factor, which 

is deffined as the ratio of maximum absolute value to the RMS value of the vibration signal, gives an 

idea about the occurrence of impulse in the time-domain signal. In real-time condition monitoring, an 

increased value of the crest factor over a period of time indicates the presence of wear or pitting. 

Another powerful parameter called kurtosis measures the degree of peakiness of a distribution 

compared to a normal distribution Jena [20]. 

Mathematically, crest factor and kurtosis for signal x(n) with N number of samples in the time 

domain can be expressed as the Root Mean Square (RMS) of the acceleration. It is defined by: 
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with the mean of the time series x(n). Kurtosis is a statistical parameter allowing the analysis of 

the distribution of the vibratory magnitudes contained in a time domain signal. It corresponds to the 

moment of fourth order divided the square of the standard deviation: 
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The Crest Factor is another time domain criterion consisting in the ratio between maximum 

magnitude of the time signal and ARMS : 
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4 Application to the Early Detection 

 

Figure 5. Kurtosis and Crest Factor evolution vs the degradation rate 

 

It is clear from Figure 5 that in the case of original signals, statistical indicators have increased 

considerably, implying a degradation of bearing condition. The Kurtosis and the crest factor so operate 

always increasingly longer depending on the aggravation of the defect. From the default number 8, the 
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Kurtosis and the crest factor begins to be higher and their progression is substantially proportional to 

the amplitude of the default. 

An improvement of the kurtosis and of the crest factor sensibility can be noticed. It can also be 

noticed that those two indicators (crest factor and kurtosis) do not vary in a linear manner when the 

size of the defect is very important Tandon [21]. Indeed, when the size of the defect is very important, 

the time space between two successive shocks becomes inferior to the relaxation time and the 

hypotheses on which the application validity lies on are not any more confirmed Pachaud [22]. 

The crest factor and the kurtosis value become inferior or equal to three and are not anymore 

characteristic of an impulsive signal Dron [23]. 

 
Figure 6. Comparison of original and reconstructed 

signals (Kurtosis) 

 
Figure 7. Comparison of original and reconstructed 

signals (Crest factor) 

 

A comparison between the values of Kurtosis and Crest factor before and after the signal 

decomposition (Figure 6 and Figure 7 shows the contribution of wavelet transforms in improving the 

sensitivity of these indicators with respect to the conventional case Merzoug [24]. It is also noteworthy 

in this study that the soft thresholding is better adapted, as long as the results obtained are better. 

 

5 Experimental application 

 

 

Figure 8. Published data setup from Loparo[26] 

 

To verify the e_ectiveness of the proposed method, the experimental bearing fault data provided by 

Case Western Reserve University is analyzed here Loparo [26]. The data were collected from a test 
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rig, as shown in Figure 8. The experimental setup mainly included a 2 hp motor (left), a torque 

transducer, and a dynamometer (right). The motor shaft was supported by 6205-2RS JEM SKF type 

bearings. The bearings inner race, outer race, and rolling elements were arti_cially seeded by a single 

point fault using electro-discharge machining, respectively. For the faults localized to the inner race, 

rolling elements, and outer race, the accelerometers were used to sample vibration signals at 12 kHz 

and were installed at the 12 o’clock, 3 o’clock, and 6 o’clock positions at the fan end, respectively. 

The data samples obtained from the different bearing health conditions are shown in Figure 9. 

 

 

Figure 9. Spectrogram of the experimental signal 

 

Two datasets of signals including health and three di_erent fault conditions are employed here for 

analysis. For each dataset, in the _rst layer of the two-layer SVRMs, 180 samples for each condition 

were acquired for training and testing, 90 samples were used for training, and the remaining 90 

samples were used for testing. In the second layer, there were 30 training samples and 30 testing 

samples for each fault severity. In the _rst layer, the inner race, outer race, ball fault, and bearing 

health target values were artificially set at 1, 2, 3, and 4, respectively, during the training while the 

actual fault sizes were determined as the target values in the second layer Shen [27]. 

The results obtained using experimental signals have come consolidate the conclusions reached in 

the case of simulations. 

 
Figure 10. Comparison of original and reconstructed 

signals (Kurtosis) 

 
Figure 11. Comparison of original and reconstructed 

signals (Crest factor) 
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6. Conclusion 
 

The wavelet transform is widely used for analyzing non-stationary vibration signals from rotating 

machines. The approach just described can trace the origin of some defects after decomposition of the 

original signal details and approximations. It allows removing the time invariant noise of a signal. This 

method improves thesensibility of temporal indicators such as the kurtosis and the crest factor which 

are often used in conditional maintenance by vibratory analysis. We can conclude that the technique 

based on the wavelet transform is an e_cient means for the diagnosis from rotating machines. 
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