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Résumé :
Un schéma de régularisation générique pour la Corrélation d’Images Numérique (CIN) et la Corréla-
tion d’Images Volumiques (CIV) basé sur la méthode de “l’écart à l’équilibre” est présenté. Cette régu-
larisation “complète” fournit un cadre unifié pour le traitement des extremités d’objet (surfaces) ainsi
que dans le volume, tout en distinguant les rôles joués par les différentes catégories d’extremités (Neu-
mann ou Dirichlet) dans les tests mécaniques. Un test expérimental valide la robustesse et la précision
de la méthode.

Abstract :

A generic regularization scheme for Digital Image Correlation (DIC) and Digital Volume Correlation
(DVC) based on the “equilibrium gap” method is presented. This “complete” regularization provides
a unified framework for handling the object boundaries (surfaces) as well as the bulk, while also dis-
tinguishing the roles that different boundaries (Neumann or Dirichlet) play in mechanical tests. An
experimental test validates the robustness and accuracy of the method.

Mots clefs : digital image correlation, digital volume correlation, mechanical
regularization, equilibrium gap

1 Introduction
Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are popular techniques to mea-
sure displacement fields from 2D and 3D image pairs, respectively [1]. These image registration tech-
niques face a considerable challenge, namely, their ill-posedness [2, 3]. In fact, the limited available
information (i.e., brightness levels) leads to an unavoidable compromise between the measurement un-
certainty and the spatial resolution [4].

A method for overcoming this limitation is to assume the displacement field to be continuous over the
entire region of interest (ROI). Hence, it can be decomposed over basis functions that fulfill this con-
straint, such as those used in the Finite Element (FE) method. The imposed inter-dependence (coupling)
between all degrees of freedom leads to the so-called global DIC and DVC methods [5, 6]. They differ
from their local counterparts [1, 7] that do not assume any continuity in the sought displacement fields.
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Additionally, regularization techniques [8] can be employed to further circumvent the ill-posedness of
the registration [2]. In particular, in the context of experimental mechanics, it is natural to seek a dis-
placement field that best registers the images while also being mechanically admissible. Such is the
goal of the so-called “mechanical regularization” based on the equilibrium gap method [9, 10]. This
regularization constrains the displacement field to one that locally follows a linear elastic behavior. It
is noteworthy that such elastic regularization has proven useful even when the actual behavior is more
complex [10].

Unfortunately, this approach by itself is not capable of applying the adequate regularization to each type
of boundary surface present in the analysis. In fact, the guiding principle is only valid for the bulk and
free-surfaces of the studied sample. For such reason, in Ref. [11], the authors proposed an approach that
mimics the bulk, as if those surfaces had an elasticity of their own in addition to the bulk (as a kind of
“surface tension”). However, the link between both models (bulk and surfaces) is relatively poor.

In the present paper, an extension to mechanical regularization is presented. It distinguishes the roles
that different boundaries (Neumann or Dirichlet) play and treats them accordingly. Moreover, it does not
require further (nor customized) developments other than those already postulated by the equilibrium
gap. It thus provides a single framework for handling the object boundaries both in 2D as in 3D without
any modification.

2 Method

2.1 Image Correlation
The registration of the images in the reference configuration f(x) and deformed configuration g(x) is
based on the brightness conservation assumption

f(x) = g(x+ u(x)) (1)

where u(x) is the sought displacement field that minimizes the L2 norm of the so-called “correlation
residuals” over the entire ROI Ω

Φc =
∑

Ω

(g(x+ u(x))− f(x))2 (2)

Given that the minimization of Φc is an ill-posed problem, the displacement field u is decomposed over
a set of chosen kinematic fields ψi, such as those used in the FE method

u(x) =
∑
i

uiψi(x) (3)

Then, the registration problem consists in minimizing Φc with respect to all the unknown amplitudes ui.
A Newton-Raphson scheme leads to linear systems

[Mc] {δu} = {b} (4)

where the matrix [Mc] is built from the image gradients ∇f and the shape functions ψi, the vector
{b} accounts for the image residuals η(x) = g(x + ũ(x)) − f(x), with ũ the current estimate of the
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dispalacement field, and {δu} updates the degrees of freedom ui gathered in the column vector {u}
during the iterations.

2.2 Mechanical Regularization
In the spirit of what was introduced earlier, an ideal regularization would be based on the actual mechan-
ical behavior of the studied specimen. Yet, in order to provide a general approach that does not need
to be tailored to each individual case, a “simplification” of the aforementioned behavior is in order. It
consists in recognizing that locally, unless a localization instability occurs, the sought displacement may
often be well described by an elastic problem. This is the spirit of the proposed regularization based on
the equilibrium gap, namely, the “distance” between the current solution and that which locally satisfies
the equilibrium equation for linear elasticity [9, 12, 11, 10]. Such equation satisfies

∇ · σ + f = 0 (5)

with the distribution of body forces f , and the Cauchy stress tensor σ. The latter is linearly related to
the infinitesimal strain tensor ε with Hooke’s tensor C. In the context of the FE method, this equation
assumes the discretized form

[K] {u} = {f} (6)

where [K] is the stiffness matrix, {f} the vector of nodal forces, and {u} collects the nodal displace-
ments associated with the displacement field u.

At this point, it is useful to recall the concept of “Neumann” and “Dirichlet” degrees of freedom (DOFs).
These terms are usually employed to denote the DOFs for which externally applied tractions or displace-
ments are known, and where conversely displacements or tractions are to be computed, respectively.
Then, under this FE discretization, the studied DOFs are classified into different groups, namely, those
belonging to either Neumann SN or Dirichlet SD boundaries, and the remaining (bulk) B ones.

Hence, given the identity matrix I that accounts for all the DOFs in the mesh, the corresponding projec-
tion matricesD (valued 1 for the DOFs that pertain to the corresponding group and valued 0 otherwise)
are related by

I = DB +DSN +DSD (7)

In particular, the Dirichlet boundary DOFs are listed with respect to each (Dirichlet) surface Si

DSD =
∑

iDSi (8)

Then, mechanical regularization consists in minimizing the L2 norm of the unbalanced nodal forces for
all bulk and Neumann DOFs

Φm({u}) = ‖[Km] {u} − {f}‖2 (9)

where Φm corresponds to the equilibrium gap for the bulk and Neumann surfaces DOFs, as given by
the partial stiffness matrix

[Km] =
(
[DB ] +

[
DSN

])
[K] (10)

However, the same argument cannot bemade for the remaining DOFs (i.e., those belonging to the Dirich-
let surfaces) because the external forces are unknown. Since the nodal forces for these DOFs do not
vanish, it is proposed to introduce a new penalization term that tends toward a common local orientation
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and similar magnitude. Hence, a penalty is introduced on the quadratic norm of the gradient along each
surface Si of each component of the normal traction. Rapid variations of the unbalanced forces along
the Dirichlet surfaces are thus dampened out (this is not the case for long wavelength components).

This surface regularization cost function is written as

ΦSi = ‖∇ (σ · n)‖2 for x ∈ Si (11)

where n is the outward surface normal. In the context of the FE method, for each surface Si, this
equation assumes the discretized form

ΦSi({u}) = {u}ᵀ[KSi ]
ᵀ [L] [KSi ] {u} (12)

where ΦSi corresponds to the penalization for DOFs belonging to the (Dirichlet) surface Si, as given by
the partial stiffness matrix

[KSi ] = [DSi ] [K] (13)

and [L] corresponds to the discrete Laplace-Beltrami operator [13] (i.e., the FE discretization of the L2

norm of the surface gradient operator).

Finally, the complete mechanical regularization is obtained by minimizing the weighted sum of the
previously defined functionals

Φt({u}) = αcΦc({u}) + αmΦm({u}) +
∑
i

αSiΦSi({u}) (14)

with the prefactors
αo =

ωo∑
j ωj
· 1

Eo
(15)

composed of a normalizing term E0 that accounts for the “energy” related to each functional (as mea-
sured by their response to a pure shear trial field), and of a weighting termω proportional to characteristic
(regularization) lengths ξ defined for each type of DOF.

The minimization of Φt is still performed via a Newton-Raphson scheme, which leads to new linear
systems (

[Mc] +
[
Mreg

])
{δu} = {b} −

[
Mreg

]
{u} (16)

with the regularization matrix

[
Mreg

]
= Ec

(
ωm

Em
[Km]ᵀ [Km] +

ωSi

ESi

[KSi ]
ᵀ [L] [KSi ]

)
(17)

3 Results
The goal of this section is to present the advantages of the technique for a tensile test performed on a
pre-cracked sample made of spheroidal graphite cast iron. The sample comes from a bigger specimen
that was pre-fatigued with a load shedding technique in order to avoid having a large plastic zone around
the crack front [14].

Seven tomographic scans were acquired at increasing loading stages using a micro-CT scanner (North
Star Imaging X50+) with a resolution of 7µm and a chosen ROI of 4.2× 1.9× 1.6mm. Scans S0,
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S1 and S2 are obtained in the elastic regime of the sample, thus the crack does not open very much.
Conversely, crack opening is more pronounced in scans S3 and S4 when the sample has yielded. Last,
ductile tearing occurs for scans S5 and S6. A mid-thickness slice of each scan is shown in figure 1
alongside the load level at which each scan was acquired.
x

y
(a) S0, 61N (b) S1, 196N (c) S2, 282N (d) S3, 646N (e) S4, 720N (f) S5, 805N (g) S6, 730N

Figure 1: (x-y) mid-thickness sections for all scans showing the test history (crack opening and tearing)
with the respective loads

The first scan S0 is chosen as the reference for the correlation procedure. It drives an automatic meshing
procedure that provides an unstructured FE mesh fitted to the actual geometry of the sample. The mesh
is constructed using tetrahedral elements of characteristic length ` = 25 vx. While such length could
be considered small (as compared to the material microstructure), it was chosen on purpose so that
unregularized DVC would encounter difficulties for converging. Furthermore, since the lateral surfaces
are traction-free, they are considered of Neumann type. However, the upper and bottom surfaces cut
through the sample. Therefore they are considered of Dirichlet type. A volume representation of scan S0
as well as the obtained mesh and the Dirichlet surfaces are shown in figure 2.

x

y
z

(a) (b)

Figure 2: (a) Volume rendering of the reference scan S0 and (b) corresponding FEmesh with the Dirich-
let surfaces highlighted

Three cases are studied: (i) none: with no regularization, (ii) bulk: using only bulk regularization,
and (iii) all: using bulk and surface regularization. All three cases are based on global DVC, and
two are complemented by the corresponding regularization. Hence, the so-called “none” case, which
corresponds to the standard version of global DVC [15], can be considered as a “regularized” version of
the more common (i.e., local) DVC approaches [7, 16] since displacement continuity is enforced over
the whole ROI. Thus, when convergence reveals difficult without regularization, most of the existing
local DVC codes would encounter even more obstacles for converging under similar circumstances.

The correlation procedure is carried out in an iterative manner (i.e., the solution found for the previous
scan is used as initialization for the current one) under a multi-scale scheme that progressively relaxes
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the regularization (via the regularization lengths). The final regularization lengths are set to ξm = 2` and
ξSi = 2ξm. Also, each correlation procedure is limited to a chosen maximum of Nit = 200 iterations.

Next, it is proposed to analyze the results from the perspective of the global correlation residual

σ =
1

∆f

√
1

NΩ

∑
Ω

(g(x+ u(x))− f(x))2 (18)

normalized by the dynamic range ∆f = max (f)−min (f).

These residuals σ are computed for each of the deformed configurations. They are reported in table 1
along with the number of iterations Nit each analysis took. With regard to the baseline measurement
(between S0 and S1), the none code does not converge (by design). Conversely, bulk and all

regularizations lead to convergence with σ = 3.24%, a low value when dealing with tomographic data.
For the remaining scans, it should be noted that all computations converged for the all case. Yet only
two and zero calculations converged for the bulk and none regularizations, respectively. Even in the
bulk cases that converged (i.e., S2, S4), it required a significantly higher number of iterations than in
the all case. This observation shows the gain associated with surface regularization.

Table 1: Number of iterations and final residual for different regularization strategies (converged results
are shown in boldface). All strategies are based on global DVC [15]

none bulk all

Nit σ Nit σ Nit σ

S1 200 5.02% 94 3.24% 13 3.24%
S2 200 10.15% 176 3.26% 18 3.25%
S3 200 11.23% 200 5.09% 16 4.44%
S4 200 11.38% 196 3.54% 14 3.49%
S5 200 11.29% 200 4.13% 33 4.11%
S6 200 11.03% 200 5.68% 65 5.37%

As it can be seen from figure 3, the top-most surface is challenging the bulk case. The correlation
with no surface regularization (i.e., none and bulk) cannot handle such phenomenon. However, just
by taking this surface into consideration (all), the problem is easily solved. These results illustrate the
beneficial effect of the proposed surface regularization.

4 Conclusion
The complete mechanical regularization proposed herein opens many possibilities in the field of Digital
Image and Volume Correlation. First, since the technique is an extension to the bulk mechanical regu-
larization, it naturally inherits all its benefits such as providing lower levels of uncertainty, even when
dealing with images of poor quality.

The reported results highlight the benefits of complete mechanical regularization. It provides fast con-
vergence, which, in practical terms, allows even complex cases to be treated both robustly and fast. This
behavior is desirable even in simple cases that may not “require” regularization, since they can be swiftly
solved using lesser iterations.
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Figure 3: (a)-(b) Longitudinal displacement (expressed in voxels) for two regularization procedures and
(c) volume rendering of the deformed scan S6

Additionally, given that the proposed formulation builds upon concepts from the Finite Element method,
it is applicable to any type of element (triangles, tetrahedra) or mesh (structured or not) in either two-
dimensions or three-dimensions. As such, objects with arbitrarily complex boundaries can be studied in
their entirety using DIC or DVC, accordingly. Furthermore, each of these boundaries can be accounted
for differently according to the initial conditions.

Last, while the discussion was based on plain linear elasticity, if a better appreciation of the sample
constitutive law is available, the corresponding regularization is easily generalized.
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