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Abstract :

In the last years, the lattice Boltzmann method (LBM) have been widely used as a solver for
simulating hydrodynamics problems. Thus, this method is used to simulate two-phase flows in
a 2D computational domain by using the pseudo-potential model proposed by Shan-Chen [1] in
(1993) which is called Shan-Chen LBM model. Firstly, we validated our code with the work
of Huang et al.[2] who have modeled the wettability phenomena of a liquid drop. Secondly,
we have studied the effect of natural thermal convection on a liquid drop inside a differentially
heated square cavity by fixing the density of the surface wetting on 2 and by varying the Rayleigh
number from 103 to 106. Results show that the liquid drop moves under the effect of gas flow
caused by the convection and it evaporates by exchanging heat with gas.
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1 Introduction
The Lattice Boltzmann Method is one of the most powerful explicit computational technique
for modeling the two-phase flows and also a numerical approach of the computational fluid
dynamics (CFD) in fluid engineering which is based on the mesoscopic kinetic equations(The
kinetic Theory of gases). The Lattice Boltzmann method (LBM) has emerged as a promising
tool for are solving the hydrodynamic Navier–Stokes equations and simulating complex fluid
flow.
Several studies have been conducted to simulate the two-phase LBM flows, the earliest one
is the color-gradient model proposed by Gunstensen et al. [3] (1991), which is based on the
Rothman–Keller (1988) (RK) multiphase lattice gas model [4]. The Shan–Chen (SC) model
(1993) appeared soon after and is based on incorporation of an attractive or repulsive force,
which leads to phase separation. The free-energy (FE) model was proposed by Swift et al.
[5] (1995), in this model the thermodynamic issue of the non-monotonic equation of state is
incorporated into the pressure tensor in the N–S equations. Also, another model is based on
the interface tracking method and is proposed by He-Chen-Zhang (HCZ) [6] (1999).
In our study, The Shan-Chen (1993) LBM model has been used to simulate two-phase flows,
even though the simulation of more phases is possible. The basic idea behind the Shan-Chen
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model lies in the introduction of an interaction force between a node of the lattice and its
“nearest neighbours”, which is able to trigger phase separation in certain conditions. Two
forces are involved, the adhesive force will appear to describe the interaction between the fluid
and the solid surface and the cohesive force for the fluid-fluid interface, which are commonly
used to determine the wettability (the degree of wetting) in terms of the solid-fluid contact
angle.
This paper is organized as follows. In Section 2, we will illustrate the physical problem, the
method for measurement of the contact angle. In section 3, we will present the validation and
discuss our results.

2 Methodology

2.1 The Shan-Chen LBM Model
In the current study, the same configuration is performed for both distribution functions
representing the fluid flow fi(xxx, t) and the temperature field gi(xxx, t), respectively. The two-
dimensional nine velocity D2Q9 model is adopted for the evolution process of both distribution
functions which is represented as :
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Figure 1: Illustration of a lattice node of the D2Q9 Model.

The Bhatnagar, Gross and Krook (BGK) approximation scheme for collision operator is adopted
for both collision and streaming steps which is given by the following equation :

fi(xxx+ eeeiδt, t+ δt) = fi(xxx, t)−
δt

τ
(fi(xxx, t)− feq

i (xxx, t)) (1)

fi(xxx, t) represents the distribution function, τ is the relaxation time that it related to the
kinematic viscosity as ν = c2

s(τ − 0.5δt), cs = 1/
√

3 represents the speed of sound and feq
i (xxx, t)

is the equilibrium distribution function defined by :

feq
i (xxx, t) = ρ(xxx, t)wi[1 + eeei.uuu

eq

c2
s

+ (eeei.uuu
eq)2

2c4
s

− (uuueq)2

2c2
s

] (2)

wi represents the weight factors :

wi =


4/9 i = 0
1/9 i = 1, 2, 3, 4
1/36 i = 5, 6, 7, 8
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The equilibrium velocity uuueq is given by :

uuueq = uuu
′ + τFFF

ρ
(3)

FFF = (Fx, Fy) is the total force acting on the fluid including fluid-fluid interaction FFF sc (cohesive
force) and fluid-solid interface FFF ads (adhesive force). The velocity uuu′ is given by :

uuu
′ =

∑
i

fieeei

ρ
(4)

The interaction force FFF sc is calculated over nearest neighbours of the pseudopotential function
ψ by :

FFF sc(xxx, t) = −Gψ(xxx, t)
∑

i

wiψ(xxx+ eeeiδt, t)eeei (5)

G is the coefficient that controls the strength of the inter-particle force. It is attractive for
(G < 0) and repulsive for (G > 0). The function ψ = ψ(ρ) depends on the local density as
follows :

ψ(ρ) = ρ0(1− exp(−ρ/ρ0)) (6)

ρ0 is the reference density. An explicit formula for the pseudopotential function ψ can be
defined related to the equation of state (EOS) according to Yuan and Schaefer (2006) [7] by :

ψ =

√
2(P − ρc2

s)
Gc2 (7)

The choice of EOS can reflect the relationship between the pressure, temperature and density.
According to Ginzburg and Adler [8], the flow velocity of fluid and the density can be obtained
by the following equations :

uuu(xxx, t) = uuu
′ + δtFFF

2ρ ; ρ(xxx, t) =
∑

i

fi (8)

The fluid-solid adhesive force is calculated by :

FFF ads(xxx, t) = −Gψ(ρ)
∑

i

wiψ(ρw)s(xxx+ eeeiδt, t)eeei (9)

The pseudopotential parameter at the wall ψ(ρw) is used to adjust the different properties
of the wetting surface. ρw is not used as real value of density of the wetting surface and
s(xxx+eeeiδt, t) is a switch function, which is equal to 1 for a solid phase or 0 for fluid phase. The
body force responsible to the generation of the temperature field (natural convection) is added
to the collision process as :

fi(xxx+ eeeiδt, t+ δt) = fi(xxx, t)−
δt

τ
(fi(xxx, t)− feq

i (xxx, t)) + ∆tFi(xxx, t) (10)

Where, Fi(xxx, t) represents the gravity force and it can be defined as : Fi(xxx, t) = 3ρβwig∆Teeey.
Where, g is the acceleration due to gravity, β is the thermal expansion coefficient and ∆T is
the temperature difference between the high and low temperature walls.
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Essential Parameters :

In this study, the Redlich-Kwong (R–K) EOS model is considered to describe the relation-
ship between the pressure, temperature and density. It is expressed by :

p = ρRT

1− bρ −
aρ2

√
T (1 + bρ)

(11)

In our simulations, the parameters are set to be a = 2/49, b = 2/21, R = 1 and T = 0.85Tc.
Where, Tc is the critical temperature. The coexisting densities are the liquid density ρl = 6.06
and the gas density ρg = 0.5, the contact angle is the most important parameter used to
quantify the wettability of a liquid drop [9, 10]. It can be evaluated geometrically as :

θ = arctan
(

b

2(r − h)

)
(12)

Where, b and h represent the base and the height of the liquid drop of radius r respectively

Figure 2: Geometrical measurement of the contact angle.

as shown in Figure 2. In turn, the radius r is expressed by r = b2/8h+ h/2.
The basic dimensionless parameters of fluid flows are Rayleigh Ra and Prandtl Pr numbers
which are defined as [11]:

Ra = gβ∆T
να

L3
x ; Pr = ν

α
(13)

Where g is the acceleration due to gravity, β is the thermal expansion coefficient, ∆T is the
temperature difference between the high and low temperature walls which is equal to unity
and Lx is the distance between them. α and ν are the thermal diffusivity and the kinematic
viscosity, respectively.

2.2 Configuration of the numerical problem
Figure 3 presents the geometry and the boundary conditions of a two-dimensional differen-
tially heated square cavity placed in a gravity field simulated bv the SC LBM model. The
computational numerical domain used in this study is (600 × 600). The temperatures of the
left and the right vertical walls of the domain are maintained at Thot = 0.5 and Tcold = −0.5,
respectively. The upper and lower horizontal walls have been considered as adiabatic. For the
fluid flow, the no-slip boundary (reflection of all distribution functions at the wall in the oppo-
site direction) is considered for the upper and lower boundaries, the bounce-back condition is
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selected for side walls (bounce-back for the right wall i.e. f1(xxx, t) = f3(xxx, t) , f5(xxx, t) = f7(xxx, t)
, f8(xxx, t) = f6(xxx, t)). The laminar gas flow can be described by assuming that the gas is newto-
nian, incompressible and satisfies the Boussinesq approximation. Midway between the vertical
walls a liquid drop of radius r = 30lu (lattice unit) is positioned.
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Figure 3: Illustration of the physical problem used in the simulation.

3 Results and discussions

3.1 Validation
Our results agree well with those obtained by Huang et al.(2009), which are presented that
when the density of the wetting surface ρw takes values between the density of the gas (ρg)
and the density of the liquid (ρl), ρg ≤ ρw ≤ ρl. The contact angle θ takes values between
0 ≤ θ ≤ 180◦. The measure of the contact angle usually indicates that wetting of the surface is
unfavorable for 90 < θ ≤ 180◦ or it is favorable for θ ≤ 90◦. Figure (3-a) shows that the wetting
of the surface is unfavorable (non-wetting phase) for θ = 148.8◦ and ρw = 2, so the liquid drop
will minimize its contact with the surface and form a compact liquid droplet. However, in
Figure (3-b) the wetting of the surface is favorable (wetting phase) for θ = 11.6◦ and ρw = 5.5,
so the liquid drop will spread over a large area on the surface.

(a) (b)

Figure 4: Different wetting situations : (a) non-wetting case with a contact angle of greater
than 90◦, (b) wetting case where the droplet spreads out over a solid surface.
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3.2 Results
In our simulation, we present the influence of the gas’s motion created by natural convection
on the liquid drop for different Rayleigh numbers (103 ≤ Ra ≤ 106) as shown in figure 4. From
this Figure, it seen that for all values of Ra, the heated gas rises along the left wall, encounters
the top adiabatic wall, travels towards the cold wall, comes down and recirculates inducing a
steady clockwise rotational flow. This recirculation pushes the liquid drop towards the left wall
and this behavior is more clearer for high Rayleigh number. The liquid drop keeps the same
shape while moving. However its radius decreases owing to the heat exchange between the gas
trapped in the cavity and the liquid droplet. Indeed, the drop is evaporated and it becomes
smaller than its initial shape. As Ra reaches 106, the flow moves faster as natural convection
is intensified. The liquid drop moves to take place next to the hot wall and it deforms under
the effect of gas pressure.
In an evaporation process, a mass transfer occurs, which means liquid meniscus including a
triple contact line has a motion. Therefore, we need to consider a dynamic contact angle
(advancing and receding contact angles) as shown in figure 2. Generally, the advancing contact
angle will tend toward a lower value during evaporation. The evaporation time of the drop of
liquid increases with increasing the Rayleigh number, this leads to an increase in the rate of
transfer of heat by convection of the cooled gas coming from the cold wall.
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(a) 10000 iterations (b) 72000 iterations

(c) 10000 iterations (d) 72000 iterations

(e) 10000 iterations (f) 72000 iterations

(g) 10000 iterations (h) 72000 iterations

Figure 5: Evaporation process of the liquid drop for Pr = 0.71 and for different Rayleigh
numbers (a-b) : Ra = 103, (c-d) : Ra = 104, (e-f) : Ra = 105, (g-h) : Ra = 106.
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4 Conclusion
Numerical computations were performed to study the wettability-natural convection interac-
tions of a liquid drop inside a square cavity differentially heated. The Shan-Chen LBM and
Thermal LBM models are used. The main purpose of this study was to follow the evaporation
process of a liquid drop by varying the Rayleigh number, Ra, and to verify the influence of
laminar natural convection on the wettability phenomenon. The results were presented in the
form of figures showing the evolution of the liquid drop over time. The results show that :

- The liquid drop size decreases with time steps for all Rayleigh numbers Ra.
- For Ra ≤ 105, the liquid drop moves to take place next to the hot wall and it keeps its initial
shape during process.
- For Ra = 106, the liquid drop moves to take place next to the hot wall and it deforms under
the effect of gas pressure.
- The liquid drop radius decreases rapidly for low Ra = 103.
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