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Résumé :

La plupart des disjoncteurs haute tension en fonctionnement utilisent le SFg comme gaz de coupure de
I’arc en raison de ses excellentes propriétés physico-chimiques. Cependant le SFg a été identifié par
ailleurs comme un gaz ayant un effet potentiel sur le réchauffement global particuliérement élevé, ce
qui motive donc I’étude de solutions alternatives a son utilisation comme gaz de coupure. Il a été pré-
cédemment établi dans la littérature que la performance intrinséque du CO2 comme milieu de coupure
dans un disjoncteur haute tension était clairement inférieure a celle du SFg. Dans le but d’améliorer
les propriétés de coupure d’un disjoncteur utilisant le CO3, un spray d’huile minérale est injecté dans
le volume d’expansion du disjoncteur afin : i) de favoriser le mécanisme d’augmentation de la pression
dans le volume thermique conduisant a un processus de soufflage de ’arc plus efficace; ii) de géné-
rer un mélange gazeux susceptible d’assurer une meilleure évacuation de la chaleur a courant nul et
d’améliorer la performance diélectrique. Un dispositif d’injection du spray a été développé sur la base
d’essais expérimentaux et est complété par une modélisation numérique de l’interaction entre le spray et
[’écoulement d’un mélange de gaz chauds dans le volume d’expansion. Des simulations numériques sont
réalisées pour différentes conditions d’injection du spray et analysées afin d’identifier une configuration

qui permet d’optimiser le mélange en vue du soufflage de I’arc électrique.

Abstract :

Most high voltage gas circuit breakers (HVCB) in operation use SFg as the arc interruption medium
because of its high dielectric strength and good arc interruption properties. However, SFg also displays
a high global warming potential which motivates the investigation of possible alternatives to this gas.
Previous works from the literature have established the COq intrinsic performance as an interruption
medium in HVCB was clearly worse than that of SF6. To improve the interruption properties of a COo
circuit breaker, a spray of a mineral oil is injected in the circuit breaker expansion volume so as to : i)
favor the pressure increase mechanism leading to a more efficient arc expansion process; ii) generate
a mixture likely to ensure a better heat release at current-zero and improve the dielectric performance.
A spray injection device has been experimentally developed and is complemented with a numerical mo-
delling of the interaction between the spray and the hot gas flow within the expansion volume. Numerical
simulations are performed for various spray injection conditions and analyzed in order to identify an

optimal mixture configuration.



24°m¢ Congrés Francais de Mécanique Brest, 26 au 30 Aoiit 2019

Mots clefs : disjoncteur haute tension, volume d’expansion, mélange gazeux,
injection de spray

Keywords : high voltage circuit breaker, expansion volume, gas mixture, spray
injection

1 Introduction

The protection of electric distribution and transmission networks nowadays widely relies on high-voltage
circuit breakers. Whenever AC current transfers must be interrupted, an electrical arc is generated due to
separation of two contacts. The arc’s energy release provokes the ablation of the polytetrafluoroethylene
(PTFE) components. These vapours are mixed together with a surrounding gas and channeled through
an expansion volume where the hot stream mixes with a fresh gas. Approaching the next current-zero,
the pressure gradient between the volume and the arcing zone is reversed. The cooled gas is then blown
on the arc zone to decrease the temperature of plasma. Once the arc is quenched, a potential difference,
known as transient recovery voltage (TRV), appears in between the arcing contacts. At this point, the
dielectric recovery of the medium would avoid a re-ignition of the electric arc due to the TRV. The
dielectric breakdown of the medium depends on electrical charges release events, which are less likely
to occur when the gas mixture temperature is lower and its electronegativity is higher. For these reasons,
an improved HVCB performance could rely on a mixing process inside the expansion volume, which
should deliver not only the flux of a colder gas but also a quantity of chemical species as well. In the
present study, the injection of a liquid spray inside the expansion volume is investigated to produce these
beneficial effects.

2 Description of the flow inside the HVCB expansion volume

An overview of the axisymmetric computational flow domain is provided in Figure 1. The domain is
restricted to the expansion volume of the HVCB and the associated channel so as to avoid the need to
describe in detail the complex arcing region. The arc is modeled through a transient pressure boundary
condition at the connection between the channel and the arcing zone, which is obtained from a numerical
simulation of the whole HVCB, including the arcing region, but performed for a coarser description of
the expansion volume. In the present study, the computational grid displayed in Figure 1 is made of a
mix of rectangular (near-wall) cells near the solid walls (boundary-layer type mesh) and triangular cells
in the inner volume for a total of 32850 cells. The gas initially entering the flow domain is a mixture of
the following components :

— (O3, which fills the device before arc ignition,

— (3 Fy (tetrafluoroethylene or TFE), which is generated from PTFE ablation during the arcing

time.

At later times, the gas mixture also includes the vapour produced by the vaporization of oil droplets
inside the expansion volume (see next section). The compressible unsteady Reynolds Averaged Navier-
Stokes equations (URANS system) are solved to describe the evolution of the gas mixture flow field. The
mass, momentum and energy equations of the mixture are completed with transport equations for the
turbulent quantities k£ and ¢, the standard k-¢ turbulence model being used to close the URANS system.
The mixture composition evolution is computed by solving two additional transport equations for the
mass fraction y; of two of the components, the third one being directly derived from Z?:l y; = L.
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Ficure 1 — Schematic view of the computational domain, boundary conditions and post-processing
sections.

The thermodynamic properties and transport coefficients of the mixture between C'O3, C2Fy and oil
have been computed using an advanced Equation of State for mixture pressure and temperature, varying
respectively between 4 and 64 bar by step of 4 bar and between 300 K and 30000 K by step of 10 K,
and the combination of mass fraction displayed in Figure 2. The corresponding values have been stored
in Look-up Tables (LuT) which are then called by the CFD solver in order to compute properties at any
point of the thermodynamic space. In the context of HVCB simulations, several CFD studies rely on
the LuT approach [1] [2] [3] [4] [5]. However, these works do not provide details on the interpolation
process applied to derive thermodynamic properties. As pointed out by few authors in the literature [6]
[7] [8], care must be taken to use an interpolation method which respects thermodynamic consistency
and stability criteria in order to be physically meaningful and to prevent the occurrence of spurious ther-
modynamic states. In the present work, the available thermodynamic potential from which all useful
thermodynamic quantities can be consistently derived is Gibbs free energy, g(p, T') in the case of a pure
substance. An interpolation g(p, T') is built from the tabulated values of g and its successive first and
second partial derivatives with respect to p and 7' (derived from tabulated thermodynamic quantities
such as specific volume v, entropy s, heat capacities ¢,, ¢, and speed of sound a) using a bi-quintic
Hermite interpolation inspired from [8]. Once the polynomial representation of g(p, T') is available, the
successive derivatives of g(p,T") with respect to p and 7" are readily computed and can be used to com-
pute all thermodynamic quantities of interest in a consistent and stable way. The approach is extended
to the case of the gas mixture under study by combining the polynomial interpolation on p and 7" with
a simple interpolation on the mass fractions ;.

The second-order upwind Roe scheme with limited MUSCL extrapolation is applied to the solution of
the governing equations. For the sake of robustness, a first-order Euler implicit time-marching scheme
is applied with a time step size At = 1us. Note the partial derivatives of enthalpy needed to compute
the Jacobian matrix appearing in the implicit stage are also derived from the polynomial representation
g(p,T). The calculation is performed over a total time ¢ = 16 ms, during which the flow properties
at the inlet / outlet boundary of the channel connecting the expansion volume to the arcing zone are
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Ficure 2 — Overview of the various compositions of the COs, CoF, and oil mixture for which a LuT
is available for the thermodynamic quantities and transport properties. The vertices of the large triangle
correspond to pure fluids.

imposed from another calculation performed on the full HVCB (but with a much coarser description of
the expansion volume with respect to the one used in the present detailed analysis of the flow dynamics
in the expansion volume). Such an approach has also been successfully applied by [1] when studying
a similar configuration (with S Fg as working fluid). The initial fluid (pure CO2) inside the expansion
volume is considered stagnant at atmospheric pressure and 300 K. The typical temperature of the gas
(essentially CoF,) flowing inside the domain is about 3500 K.

3 Spray injection

In order to enhance the arc interrupting properties of CO a liquid spray of mineral oil is injected in
the expansion volume. The liquid spray evolution is described in a Lagrangian framework well adapted
to the modelling of this dispersed phase. Oil droplets are represented as point-like bodies, namely par-
cels, which move across the gaseous domain in a Lagrangian frame. The droplet behaviour or trajectory
is described by a set of Ordinary Differential Equations (ODEs), describing mass, force and thermal
balances. Liquid-gas interactions are defined using a two-way coupling approach, where the gas flow
induces aerodynamics forces on droplets while, reversely, droplets travelling along their trajectories ex-
change mass and energy with the gaseous phase. This retroaction is described by source terms included
in the URANS equations governing the carrier phase. In the case of a turbulent gas flow, a turbulent
dispersion model (Discrete Random Walk) is introduced to take into account the effect of the gas fluc-
tuating velocities on droplet motion. Moreover liquid-gas heat transfers are described by convective and
evaporative models, which express the transport phenomena occurring at the droplet-gas interface. A
number of experimental setups have been developed and exploited to perform reference measurements
(e.g. [9]) which made it possible to calibrate and validate Eulerian-Lagrangian solvers so as to achieve
quite accurate prediction of droplets kinematics and granulometry (see for instance [10] [11]).

Parcels are numerically released by point-like sources positioned along the spray nozzle exit surface
(see next section for the location of the spray inside the expansion volume). From each of these points,
velocity, temperature, diameter and mass flow rate of parcels can be assigned. Droplet size-velocity
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measurements are currently being performed for an injection system developed in the framework of an
experimental study on spray injection inside the expansion volume of a HVCB. The preliminary calcu-
lations performed in the next section make use of a population of droplets defined accordingly to the
experimental (SP2) measurements collected by Masri and Gounder [9] ; the droplets characteristics are
fixed in time and vary from one release point to the other. The liquid mass-flow rate is imposed equal to
5.65- 107 kgs—'. Oil droplets are released during the whole physical time of calculation (t = 16 m.s).

4 Preliminary analysis of two spray injection configurations

Several parameters can be identified which influence the temperature and mixture composition during
the interaction between the hot gas initially blown into the expansion volume and the liquid spray : size-
velocity distribution of the injected droplets, physical properties of the liquid, liquid mass-flow rate,
injection starting time and duration, spray location. In the present analysis, three configurations are stu-
died. In the first configuration, no spray injection is applied - the fluid is a CO9 - CoF4 mixture. This
reference configuration provides a baseline scenario for the development of the main flow-field features.
The other two configurations include spray injection and differ only by the location of the spray injection.
As described in Figure 1, configuration A corresponds to a spray injected on the wall of the expansion
volume opposite to the channel connecting the volume with the arcing region, while configuration B
corresponds to a spray injection located on the upper (or outer) wall at mid-distance between the channel
exit and the opposite wall. Furthermore we want to observe how the introduction of a spray injection
could affect the flow field. We propose then two additional configurations, named A and B, in which
we release parcels from two different locations as depicted in Fig.1. In both cases, the evaporation of
droplets will create oil vapour which will be then described as a third species in the gas mixture; the
corresponding consistent interpolation process between LuT is then applied to compute the mixture
thermodynamic properties and transport coeflicients.

Figure 3 displays the time evolution of the normal velocity at the inlet/outlet boundary. It can be observed
the fluid is first pushed inside the domain, during the 2 first milliseconds . Around ¢ = 2 ms the flow
direction starts to reverse and the outflow initiates. Around ¢ = 7ms and 13 ms other flow reversal
events take place but, unlike the initial in-flow, they are not sufficient to sustain the hot-gas flow up to
the expansion volume.

Figure 4 displays the temperature field during the initial compression and expansion phases : the hot fluid
(CyFy) first invades the expansion volume and mixes with the fresh gas (pure CO; for the no-injection
case, mixture of CO3 and oil vapour for injection cases A and B). Once the pressure in the volume be-
comes larger than the inlet pressure, the fluid flow reverses and the expansion phase starts : some fresh
fluid is aspired through the channel while a vortical structure transporting TFE detaches from the chan-
nel to move inside the core of the expansion volume. A comparison between the reference no-injection
solution and the flow fields computed for injection A and injection B indicates a very limited influence
of the injected droplets on the temperature distribution inside the expansion volume - which is consistent
with the small liquid mass injected.

Let us now use the no-injection axial (x component) velocity field to keep track of the fluid motion (the



24°m¢ Congrés Francais de Mécanique Brest, 26 au 30 Aoiit 2019

200,
1504
1004

50+

; AR

IN-FLOW

-100
-1504
-2004 OUT-FLOW
-2501
-300

Radial Velocity (m/s)

0 0001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 001 0011 0.012 0013 0014 0.015 0.0
Time (s)

Ficure 3 — Evolution of the mean normal velocity at the inlet/outlet boundary as a function of the
physical time.
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Ficure 4 — Temperature contours for the three configurations under study. Top : at ¢ = 1 ms; bottom :
att = 2ms.

impact of the droplets on the gas mixture dynamics for configurations A and B remaining limited despite
the two-way coupling process applied) while analyzing the spray injection features for configurations
A and B at successive times ¢ = 1.2ms, 2.4ms and 6.4 ms in Figure 5. During the in-flow phase
(negative value of axial velocity at the channel mouth inside the expansion volume, see top picture in
Fig.5), droplets in configuration B are transported by the carrier phase towards the back-side of the
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domain while in configuration A the liquid plume develops mostly in a fluid which is still close to rest
hence displays slightly less extension compared to B.
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Ficure 5 — Carrier-phase axial-velocity for the no-injection configuration and contours of the droplets
diameter for spray injection configurations A and B. From top to bottom : in-flow phase (top picture)
followed by expansion phase (middle and bottom pictures).

At the beginning of the expansion phase, see the middle picture in Fig.5, the TFE vortex seems to act
as a barrier preventing droplets in configuration A to move forward throughout the expansion volume to
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get closer to the exit channel. At the same time, the liquid spray in configuration B has been split by the
TFE vortex ; most of the droplets follow the pressure gradient and are thus guided in the direction of the
exit channel. At this stage the hot flow is interacting with the liquid in both configurations, the droplets
diameter starts to decrease, as the evaporation process is enhanced.

Once the TFE vortex decays inside the expansion volume (see bottom picture in Fig.5), the mixing
process between hot and cold fluid is completed. The liquid in the expansion volume for configuration
A is kept on the back-side where the temperature is lower with respect to the center part. At the same
time, for configuration B, the spray development is only mildly perturbed by the gas flow and the liquid
plume extent is limited by the hot-core region.

The oil vapour mass fraction is displayed in Fig. 6 at a time ¢ = 3.9 ms corresponding to the expan-
sion stage of the flow. For configuration A, the vapour is still mostly present in the neighbourhood of
the injection location because, as seen in the middle picture of Fig.5, the evaporating droplets are still
mostly present in this region - the spray development being tempered by the TFE vortex developing
in the chamber. For configuration B, a larger diffusion of oil vapour can be observed with oil vapour
present in the channel and flowing towards the arcing region.
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F1GurE 6 — Carrier-phase axial-velocity for the no-injection configuration (top) and contours of vapour
oil mass fraction for injection configurations A and B at time ¢ = 3.9 ms.

This qualitative analysis of the flow evolution inside the expansion volume can be completed with a more
quantitative assessment of the spray performance with respect to the objective of delivering the chemical
species brought by the spray to the arcing region. It is proposed to define the spray injection efficiency as
the ratio between the mass of oil vapour delivered to a given section o (typically the section connecting
the channel to the expansion volume) and the injected liquid mass. Since oil vapour is created by the
droplet evaporation process, this efficiency can be expressed as the following product :

7 = TNevallo (D
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where 7.,, measures the ratio between the oil vapour mass created by the droplet evaporation process
and the mass of injected liquid oil

e It (J 2e2av) at | l
_ Mea _Jw _ ieua dt @)
Teva my(ty —to) 1y (ty — to) ity —to) Jyy

and 7, measures the ratio between the oil vapour flowing through section o with respect to the total
mass of oil vapour created in the expansion volume

t - o
Ny = —2 — i Uy Youp - fide) dt Y The dt 3)
Meya tl;f (fV aygzzpdv) dt Meva to

Figure 7 displays the evolution with time of %

share an increase of the evaporation-rate up to a peak followed by a stabilization stage to a lower value

for configurations A and B. Both configurations

but they also display a different dynamics. It can be indeed observed that evaporation starts slightly ear-
lier in configuration B. For this configuration the hot gas reaches the liquid in advance with respect to
configuration A, thus causing the peak of vapour generation around ¢ = 2 ms. As the hot-gas advances
through the back-side of the expansion volume, the evaporation process takes place in configuration A as
well. As previously observed in Fig.5, droplets in configuration A tend to accumulate in a colder region,
thus their evaporation-rate increases slightly slower with respect to configuration B and reaches a peak
at around ¢t = 7ms. As the TFE vortex decays, the temperature becomes more homogeneous inside
the volume, so that for both configurations a similar evaporation regime is eventually established after
t = 12 ms. Integrating these curves yields 7eyq, = 0.80 and 7eyq,; = 0.90.
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FiGure 7 — Evolution of normalized oil vapour production over time (until £ = 16 ms) for configura-
tions A and B.
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Furthermore in Figure 8 the variation with time of % is displayed for both configurations A and B. It
is observed a greater amount of vapour oil flows towards the arcing zone in configuration B. Integrating
these curves yields 7,, = 0.005 and 7,, = 0.225. Since it was deduced from Fig.7 the difference
between 7eyq, and 7eyq; Was rather modest, it can be concluded the B spray injection configuration is
much more efficient than the A spray injection configuration - the detailed calculation yields np = 5014.
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FiGure 8 — Normalized oil vapour mass-flow rate at /L = 0.7 vs time. Blue and red lines correspond
respectively to configurations A and B.

5 Conclusions

Eulerian-Lagrangian simulations of the interaction between an evaporating spray of mineral oil and the
hot gas mixture (CO2-C3F,) developing inside the expansion volume of a HVCB have been performed
and analyzed. A transient pressure profile, obtained from a companion calculation of the whole HVCB
system (including the arcing region), has been imposed at the boundary of the expansion volume in order
to reproduce in a simple way the compression and expansion of the hot gas mixture inside the volume.
It is thus possible to focus on the parametric analysis of the spray injection performance. In the present
preliminary study, the influence of the spray injection position has been assessed for two configurations
A and B, corresponding respectively to a spray injection from the wall facing the inlet/outlet channel
and from the top or outer radius of the expansion volume. Numerical simulations predict (and provide
the physical understanding of this prediction) that both configurations produce a similar amount of oil
vapour but the oil vapour is much less efficiently delivered to the arcing region for configuration A,
resulting in an overall better performance expected from configuration B. Further studies will include
injected spray characteristics derived from ongoing experiments.
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