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Abstract :

In this work, the Asymptotic Numerical Method (ANM) with a Moving Least Squares method (MLS) for
the simulation of a compressible fluid flow is presented. The strong formulation of compressible viscous
isothermal Navier-Stokes equations is the starting point. This proposed high order implicit algorithm
is based on the implicit Euler scheme, a homotopy technique, a Taylor series, the MLS method and a
continuation method. The MLS is a meshless collocation method and has attracted the attention of many
researchers in recent years. Thanks to Taylor development, the nonlinear partial differential equations
written under the strong formulation of a compressible fluid are transformed into a succession of linear
differential equations with the same operator. This algorithm makes it possible to obtain the solution
in a very along time interval with a less expensive CPU time. The results obtained by the proposed
algorithm will be compared with those obtained using an explicit Runge-Kutta scheme and the Finite
Difference Method (FDM) and those calculated by the Newton-Raphson method with MLS method also.
The efficiency of this algorithm is tested on a standard benchmark of fluid mechanics such as the lid-
driven cavity problem.
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1 Introduction
The compressible fluid flows takes a large part of fluid mechanics and find their applications in many
fields such as aeronautics,the hydraulics of free flows and the propulsion of various machines. These
fluid flows are described by algebraic equations which has been the subject of several investigations to
elaborate an efficient algorithm. In their generality, these equations are relatively non-linear and com-
plex thus give rise to resolutions that make using several numerical methods and important computation
times. The use of mathematical models for the simulation of such phenomena has become essential as



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

a means of prediction. The need for a software robust able to treat this type of problem led to the deve-
lopment of numerical methods able to handle the different difficulties applied on different formulations
[1, 2]. Hence, the incremental–iterative as Newton–Raphson method was one of the most useful ways for
solving the nonlinear problem depending on a single parameter. It can be coupled with spatio-temporal
discretization methods such as the implicit schemes with the Finite Difference Method (FDM) or Finite
Element Method (FEM) or meshless methods.

The aim of this work is to implement a high order implicit algorithm to simulate the compressible vis-
cous isothermal Navier-Stokes equations. The numerical solution of the Navier-Stokes non linear Partial
Differential Equations (PDEs) is a very challenging and demanding problem. In this case, we adopt an
efficient algorithm for solving the nonlinear problems numerically. This algorithm is based on the fol-
lowing steps : the Euler implicit scheme for the temporal discretization, the MLS method for the spatial
discretization, the Taylor series, the homotopy technique and the continuation procedure. The homo-
topy transformation consists to introduce an arbitrary parameter "a" and an invertible pre-conditioner
[K∗] by modifying the problem to be solved [3, 4, 5]. When the homotopy parameter is zero, we get
a linear problem easy to solve and when it is equal to one, we find the initial problem. The boundary
conditions are treated by the collocation method [4]. This algorithm has been tested successfully on non
linear problems evolving in time and space [4, 5]. To demonstrate the effectiveness and the robustness
of the implicit high-order solver in comparison with the explicit Runge-Kutta scheme using FDM and
the Newton-Raphson with MLS solvers, the example of a compressible fluid flow in a lid-driven cavity
is studied.

2 Compressible viscous fluid model
The fluid medium constitutes a particular case of continuous medium for which a state of rest cannot be
maintained in the presence of non-zero shear stresses unlike solids, which remain in a state of rest under
shear forces. In this study, it is assumed that the fluid is compressible at constant temperature and that
the system is closed by limiting itself to the first three conservation laws which are expressed as follows :

∂ρ
∂t +∇.β = 0

∂β
∂t +∇(β.V ) = ∇τ −∇p

p = C0ρ

τ = µ(t∇V +∇V )− 2µ
3 (∇V )I

β = ρV

(1)

where ρ is the density, V = t < u, v > is the velocity field, p is the hydrostatic pressure, τ is the
viscous stress tensor and C0 is a constant defined by C0 = b2 with b is the speed of sound. We combine
the unknowns ρ, u and v into a single vector Xm =t< ρ, u, v > to write the previous equation in the
following compact form :

MẊm + L(Xm) +Q(Xm, Xm) = 0 (2)

For the boundary conditions on the interface of the contact fluid/solid, the velocity of the particles fluid
must be equal the velocity of the solid wall. For the mass density boundary conditions are obtained by
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the scalar product of the moment equation with the normal {n} = t < nx, ny > of the solid wall. This
boundary conditions are expressed as :

u = uwall

v = vwall

C0∇ρ.n = (∇τ − ∂β
∂t −∇(β.V )).n

(3)

2.1 Time discretization and Moving Least Squares
Firstly, to introduce a tomporelle discretization using the implicit Euler scheme, one considers a change
of variables as follows :

Xn+1
m = Xn

m + δXm (4)

where Xn
m represents the value of the unknown Xm at time tn = nδt with δt is the time step. The

nonlinear problem verified by the new unknown is written in the following form :

MδXm + δtLk(δXm) + δtQ(δXm, δXm) + δtFk(Xn
m) = 0 (5)

where Lk(δXm) and Fk(Xn
m) are written such as :
Lk(•) = L(•) +Q(Xn

m, •) +Q(•, Xn
m)

Fk(•) = L(•) +Q(•, •)
(6)

The second step of the proposed algorithm consists in introducing a MLS type approximation for spatial
discretization at any point M of the studied fluid domain. The MLS approximation was devised by
mathematicians in data fitting and surface construction [9]. It can be categorized as a method of series
representation of functions. This approximation makes permits to write the unknown at pointM(x, y)

by means of a set of situated points in a sub-domain called the support of the considered point. This
approximation in considered pointM(x, y) is defined by :

δXm = [Φ]{δX} (7)

where [Φ] is a matrix that contains the shape functions computed in each neighbourhood of point
M(x, y) and {δX} is the nodal field variable at all neighbourhood nodes of point M(x, y). Taking
into account of this approximation and after substitution and assembly techniques, the problem (5) is
written in the following condensed form :

[KT ({Xn})]{δX}+ {Fq({δX})} = {F ({Xn})} (8)

where [KT ({Xn})] = [Kn
T ], {F ({Xn})} = {Fn} are the tangent matrix and a right hand side depen-

ding on the solution {Xn} at the previous instant tn = nδt and {Fq({δX})} is a quadratic form.
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2.2 Homotopy transformation
In order to avoid the inversion of the tangent matrix at each time step, a homotopy transformation is
adopted [3, 4, 5]. Its consists to introduce an arbitrary invertible matrix [K∗] and an arbitrary parameter
"a" in the following form :

[K∗]{δχ}+ a([KT ({Xn})]− [K∗]){δχ}+ a{Fq({δχ}, {δχ})} = a{F ({Xn})} (9)

It allows recovering continuously the original system ({δX} = {δχ}) when a = 1 and the easier system
to solve when a = 0 ({δχ} = {0}).

2.3 Taylor series expansion
To solve the nonlinear dynamic problem (9), we seek the solution in the form of a truncated series
expansion at order k [6] with respect to homotopy parameter "a" as follow :

{δχ} = a{δχ1}+ a2{δχ1}+ ...+ ak{δχk}

{δX} = lim
a→1
{δχ}

(10)

Taking into account of the Taylor series expansion (10), we obtain the following recurrent sequence
linear problems easy to solve at each order :

Order i = 1 : [K∗]{δχ1} = {Fn}

Order 2 ≤ i ≤ k : [K∗]{δχi} = ([K∗]− [Kn
T ]){δχi−1}+ {Fnli }

(11)

2.4 Continuation technique
The basic principle of the continuation is to determine the path by a succession of high order power
series expansions with respect to a well chosen path parameter [6, 7]. The maximal value for this path
parameter "a" is defined by :

amax =

(
ε
||{δχ1}||
||{δχk}||

) 1
k−1

(12)

where ε is a tolerance parameter and ||.|| represents a given norm. When a→ 1 we recover the solution
of the problem (8). The solution of the initial problem (2) at time tn+1 = (n + 1)δt is obtained by
{Xn+1} = {Xn}+ {δχ(amax ≥ 1)}

3 Numerical application and discussion
The lid-driven cavity problem is a standard benchmark in computational fluidmechanics. The simulation
domain consists of a square region confined by solid walls of length L = 1. The top wall is moving at a
constant horizontal speed v0 = 10, while the others are fixed (see figure 1). In this study, the fluid have a
dynamic viscosity µ = 0.1, an initial mass density ρ0 = 1 , this leads to a Reynolds number Re = 100.
The flow is considered subsonic with a Mach numberMa = 0.1 which means that the speed of sound
b = 100

(
b = v0

Ma

)
. The numerical parameters used in this work are : the number of nodes in the mesh is

3249 nodes i.e 9747 degrees of freedom, the length of support domain is h = 0.0452 and the tolerance
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parameter is taken ε = 10−6 for the implicit algorithms (ANM with MLS and Newton-Raphson with
MLS) with a time step δt = 10−2s. While, for the explicit algorithm (FDM explicit R-K), the time step
is defined by the CFL-condition [8, 10]

(
∆t < min

(
h

a+
√
u2+v2

, ρh
2

4µ

))
, in this case δt = 10−4s.

( . , . )
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Figure 1 – Domain and boundary conditions

The table 1 presents the number of matrix decompositions and the time CPU (minute) of the used al-
gorithm, the Newton-Raphson solver and the FDM using explicit Rang-Kutta. According to this table,
the ANM with MLS algorithm requires a very small number of matrix inversions and a time CPU com-
pared to the explicit and Newton-Raphson solvers. The solution is obtained by the presented algorithm
from a truncation order k ≥ 8, indeed when this last increases the Nb. of decompositions decreases,
while the time CPU increases with 5 to 10 minutes from the first order k = 8. Note that, all numerical
computations are achieved until the time t = 2s.

Algorithms order Nb. of decompositions CPU time (min)

ANM with MLS
k = 8 4 21

k = 12 2 27

k = 16 1 31

Newton-Raphson 979 398

FDM Explicit R-K 20000 1290

Table 1 – Number of matrix inversions and CPU time in minute using ε = 10−6 for the implicit algo-
rithms

In the figure 2, we represent a comparison of the x-component of velocity u/v0 versus the space variable
y(x = 0.5) and the profile solution between the compressible and incompressible cases. Figure 2a
shows that the obtained results are in good agreement with those computed by the Newton-Raphson
and the explicit algorithms. While from the figures 2 b,c and d, we observe the difference of velocity
and streamlines profiles between a viscous gas (viscous compressible fluid) and viscous liquid (viscous
incompressible fluid).



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

-0.2 0 0.2 0.4 0.6 0.8 1

velocity u/v
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y(
x=

0
.5

)

Prsented

Newton-Raphson

FDM Explicit R-K

(a) Comparison of the implicit and explicit al-
gorithms

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

velocity u/v
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y(
x=

0
.5

)

Compressible

Incompressible

(b) Comparison between the compressible and
incompressible solutions

(c) Streamlines of the compressible flow (d) Streamlines of the incompressible flow

Figure 2 – x-component of velocity versus space variable y at x = 0.5

In figure 3, the mass density versus space variable y(x = 0.5) for a Mach numberMa = 0.1,Ma = 0.2

,Ma = 0.3 andMa = 0.4 are plotted. It shows that the change in the mass density increases when the
Mach number increases.
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Figure 3 – Evolution of mass density at the line y(x = 0.5) for several Mach numbers

4 Conclusion
Ahigh-order implicit algorithm has been presented in order to propose an efficient tool for the simulation
of compressible fluid flows. The introducing of a homotopy technique made it possible to reduce cost
time in terms of the inversions number of the tangent matrix in order to obtain the solution in a time
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interval. The effectiveness in flows simulation is tested on a viscous compressible isothermal flow in a
lid-driven cavity with a comparison of the obtained result with those computed by the Newton-Raphson
algorithm and a explicit Range-Kutta scheme using a Finite Difference Method.
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