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Résumé :
Une stratégie multi-échelles est proposée pour étudier le rôle de la décohésion interfaciale sur les pro-
priétés piézorésistives du nanocomposite graphène/polymère. L’effet piézorésistif est la modification de
la résistivité électrique lorsque des contraintes mécaniques sont appliquées. Premièrement, un modèle
de zone cohésive est identifié à l’aide de simulations atomistiques. Ce modèle de zone cohésive sert à
enrichir le modèle d’interfaces imparfaites, modélisant les graphènes, à l’échelle mésoscopique de notre
modèle de mécanique. Ce modèle non linéaire est utilisé pour générer des Volumes Elémentaires Re-
présentatifs déformés afin d’étudier l’influence de la déformation et de la décohésion interfaciale sur la
conductivité des nanocomposites polymère/graphène. La conductivité effective est étudiée avec un mo-
dèle électrique continue à l’échelle mésoscopique incorporant l’effet tunnel. Une transition conducteur-
isolant est observée pour des allongements supérieurs à 2% pour la fraction volumique de graphène
juste au-dessus du seuil de percolation. La transition apparaît pour un allongement de 8% au lieu de
2%, lorsque la décohésion interfaciale est négligée.

Abstract :

Amultiscale strategy is proposed to study the role of interfacial decohesion on the piezoresistive proper-
ties of graphene/polymer nanocomposite. A cohesive zone model is identified by atomistic simulations.
This cohesive zone model enriches imperfect interfaces, which model graphene sheets, at mesoscale in
our continuum mechanical model. This nonlinear mechanical model is used to generate deformed repre-
sentative volume element to study influence of strain and interfacial decohesion on the conductivity of
graphene/polymer nanocomposites. The effective conductivity is studied with an electric continuum mo-
del at mesoscale that incorporates the tunneling effect. A conductor-insulator transition is observed for
elongations above 2% for graphene volume fraction just above the percolation threshold. The transition
appears for an elongation of 8% instead of 2%, when the interfacial decohesion is removed.

Mots clefs : Polymère/graphène nanocomposites, Interfaces imparfaites,Mo-
dèle de zone cohesive, Couplage electro-mécanique
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1 Introduction
Graphene/polymer nanocomposites have recently attracted a growing attention due to their high electric
conductivity for very low volume fraction and their interesting mechanical performances. A wide range
of smart materials have been developed for practical applications with the introduction of graphene
or other carbon allotropes. In particular, the research on strain sensing behavior of graphene/polymer
nanocomposites has been carried out based on monitoring the strain-induced resistivity change, i.e.
piezoresistive effect, showing potential in the area of structural health monitoring.

Although many experiments have been conducted to study these new materials, the mechanisms under-
lying the piezoresistive effect are still not well understood. Their influences on effective properties remain
an open domain. This study proposes a multiscale and mutli-physical strategy, in order to understand
the role of interfacial decohesion on the piezoresistive properties of graphene/polymer nanocomposite
[1]. The main issues of this aim are :

— the identification of the mechanical behavior laws associated with the nanometric decohesion
mechanism between graphene and the polymer ;

— the numerical simulation of Representative Volume Element (RVE) containing very thin objects
such as graphene sheets ;

— the modeling of quantum effects, such as the tunneling effect, at the continuum mesoscale.
In that context, a multiscale and multiphysics simulation framework, from nanoscale up to the macro-
scale, can help us to tackle these issues. The contribution and the originality of this work is to combine
and to transpose three modeling framework :

— the identification by Molecular Dynamics (MD) of a Cohesice Zone (CZ) model between gra-
phene and polymer ;

— the imperfect interfaces to model the graphene sheets like a 2D object to avoid to finer mesh for
the resolution of the mesoscopic problem by Finite Element Method (FEM) [2, 3, 4] ;

— the introduction, at the continuum mesoscoale, of the tunneling effect to model of electrical
conductivity through a distance function, d(x) [2, 3, 4].

Figure 1 presents a scheme of our bottom-up approach, which is able to predicts the variation of electrical
conductivity and percolation threshold of the polymer/graphene nanocomposites under applied strain.
The effective electrical conductivity is computed by nonlinear FEM framework, which takes into account
the tunneling effect [2, 3, 4, 5], at mesoscale on the deformed RVEs. The tunneling effect, which is
quantum phenomena, is created through very thin isolating barriers like polymer layers when the distance
between the two conducting phases lower than several nanometers. It leads to unexpected values of
electrical conductivity for very small volume fractions of graphene.

2 Identification of a nonlinear cohesive model by molecular dy-
namic

In the present section, a nonlinear CZmodel for the interface between graphene and polymer is identified
by MD simulations. For this purpose, we study a sample where a graphene sheet is placed on the top of
PE slab (see Fig. 2 (a)). A coarse-grained model is used for PE macromolecules, which are represented
by 500 beads of −CH2− atom units. The system contains 80 PE chains and 4860 carbon atoms in the
graphene sheet. The system is periodical on X-Y plane and non-periodical on Z direction. Dreiding



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Γ0
Γ1

Ω0 Ωt

DC
F

Atomistic scale Mesoscale

Cohesive zone 
identification

Mechanical
properties

Electrical
properties

Tunneling
 effect

Figure 1 – Strategy of the multiscale modeling for study the electromechanical coupling of gra-
phene/polymer nanocomposites.

potential [6] is employed in the simulation. For simplicity, we assume that the system is nonpolar, i.e.
the electrostatic term in the nonbonded part of potential energy are neglected.

The initial system is prepared from the self-avoiding random walk combining the molecular dynamics
relaxation steps [1].

To study the separation in opening mode, graphene was moved in successive steps of 0.5 along the Z
direction following by a minimization procedure. The graphene atoms and bottom layer of the polymer
were kept fixed (see Fig. 2(a)). The separation process is depicted in Figs. 2. The polymer chains undergo
stretch at the beginning along the Z direction, then form highly oriented structures, called fibrils or nano-
fibrils. Voids appear between the fibrils during the decohesion. This deformation mechanism observed
during the simulation is similar to the nano-crazes of some semi-crystalline polymers, such as polybutene
[7, 8]. The size of the void grows along the separation direction ; and the extended chains slide along
the graphene sheet to increase the fibrils as described in [9]. It should be noted that the separation is
controlled by the chain desorption at the graphene surface by sliding, which is dominated by van der
Walls interaction.

The average force of polymer on graphene was monitored, as from which we can get the normal traction
force, tn of cohesive zone as a function of the displacement of graphene layer, JunK, as shown in Fig.
3. The force varies linearly with the displacement of graphene sheet at the which corresponds to the
domain where the behavior of the interface is reversible. Then the curve bends to reach a maximum at
0.7nm, called the yield threshold. This phase corresponds to the nano-fribils creation and to the cavity
initiation. Once the yield threshold crosses, the force decreases with the displacement of graphene sheet.
During this phase, the chains slip on the graphene sheet to feed the fibrils. It is likely that the observed
softening is related to the reduction of the contact area between polymer chains and graphene. The MD
results are fitted with the following empirical model :

tn = gcz (JunK) =


−1529JunK2 + 2150JunK if 0 ≤ JunK < 0.7

65
JunK8 −

4.31
JunK14 + 263.74 if 0.7 ≤ JunK ≤ 1.15

360 exp(−0.16JunK)− 15.12 if JunK > 1.15

(1)
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Figure 2 – Evolution of the atomistic model during the normal separation. The model contains 44860
atoms, and the graphene is moved with a step of 0.5 . The graphene atoms and the bottom layer of the
polymer are fixed during the relaxation.
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Figure 3 – Traction force, tn vs displacement of graphen layer JunK. The points denote the MD results
and the line is the fitting curve. There is a correspondence between the bold points with the letters (a-d)
on the curve and the Figs. 2(a-d).
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3 Mechanical modeling
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Figure 4 – RVE model of the graphene-reinforced nanocomposite.

Consider a continuum bodyΩ in the reference configurationΩ0 ∈ R3, and the spatial configurationΩt ∈
R3. The boundary of Ω0 are denoted by ∂Ω0 in reference configurance and ∂Ωt in actual configuration.
In the reference configuration, the graphene sheets are distributed randomly in the domain as the internal
discontinuity Γ

(n)
0 (n = 1, 2, . . . , N ), as shown in Fig. 4. The graphene surfaces and their boundary are

collectively denoted by Γ0 = ∪nΓ
(n)
0 and ∂Γ0 = ∪n∂Γ

(in)
0 ∪ ∂Γ

(out)
0 where ∂Γ

(in)
0 = ∂Ω0 ∩ ∂Γ0. The

two sides of the interface are denoted by Γ+
0 and Γ−0 . And the unit vector normal to the interface in the

reference configuration is n(X). The displacement of the bulk, and the two sides of the interface are u,
u− and u+ respectively. The current positions, x of the material particles at the inital position, X, are
defined by x = X+u for the bulk. x− and x+ are the current position for the two sides of interface. The
graphene sheets are modeled as the general imperfect interface [10, 11], satisfying JuK = u+−u− 6= 0

and JxK 6= 0, the traction through the graphene surfaces is also discontinous, JtK = t+− t− 6= 0 where
t+ and t− are respectively the traction on Γ+

0 and Γ−0 associated to the normal n(X).

3.1 Internal virtual work
In this section we follow the theory of imperfect interface at finite strains developed by Javili et al [11].
The internal virtual work, δWint, is given in reference configuration by the contributions of polymer
bulk and graphene sheets, which are modeled by imperfect interfaces :

δWint(u, δu) = δW
(b)
int(u, δu) + δW

(s)
int (u, δu) (2)

Using the second Piola-Kirchhoff stress tensor S (resp. the surface second Piola-Kirchhoff stress tensor,
Ss ), we achieve finally the following expression of internal virtual work (for a configuration in static
equilibrium) in the form :

δW
(b)
int(u, δu) =

∫
Ω0

S : δεdV (3)

δW
(s)
int (u, δu) =

∫
Γ0

Ss : δεs + {{t}}. JδuK dS (4)

where δε (resp. δεs) is the variation of the symmetric Green-Lagrange strain tensor, ε = 1
2(FTF −

I) (resp. the variation of the surface Green-Lagrande strain tensor, εs = Is0εI
s
0). Here, Is0 = I −
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n(X)⊗n(X) is the projector into the tangente plan of interface in the reference configuration. {{t}} =

1/2 (t+ + t−) is the average of traction.

3.2 Constitutive laws
We choose the Saint Venant-Kirchhoff model for bulk part, which is an extension of the linear elastic
material model, the second Piola-Kirchoff stress is given by :

S = C(b) : ε (5)

where C(b) is the forth order tensor of stiffness. It is assume to be isotropic and defined by Lame’s
coefficient λ(b) = 6890 MPa and µ(b) = 680 MPa [3]. These elastic parameters are identified by MD
simulations.

Like for the bulk, we assume for sake of simplicity that the behavior of imperfect interface is reversible.
The surface elastic behavior of graphene is assumed to isotropic inside its plane, so the surface second
Piola-Kirchoff stress is given also by Saint Venant-Kirchhoff model :

Ss = 2µ(s)εs + λ(s) (εs : Is0) Is0 (6)

where the surface Lame’s coefficient λ(s) = 19.0 N.m−1 and µ(s) = 18.7 N.m−1 are identified by MD
simulations [3].

The expression of traction {{t}} is assume to be aligned with the displacement jump JuK and given by :

{{t}} = gcz (JuK)
JuK
||JuK||

(7)

where gcz (JuK) is the function identified by MD simulations in Eq. 1.

4 Electro-mechanical coupling examples

Figure 5 – RVE for the graphene/polymer nanocomposites involving 15 graphene square sheets in a
cube of 70×70×70 nm3.

We use this FEM framework to investigate the effective properties of graphene reinforced nanocom-
posites with various graphene volume fraction in linear regime. The volume fraction is controled by
increasing the number of graphene sheets in the domain. The generation of the random RVEs is provi-
ded in [1]. The in-plane dimensions of graphene sheets are 15× 15 nm2 and the RVE side length of the
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cubic domain is 70 nm. We consider multi-layer graphene platelets, also called here sheets, which have
a finite thickness, h = 0.2 nm. In this study, the graphene sheet are modeled by square plane with the
side length L = 15 nm. One example of isotropic graphene nanocomposite RVE is illustrated in Fig. 5.

4.1 Electrical model of graphene-reinforced composites
A numerical model for electric properties of graphene/polymer nanocomposites has been proposed in
[2]. In this section, we use the deformed RVE in actual conficuration Ωt providing from mechanical
simulations. The graphene sheets are assumed to be in the middle of imperfect interface Γt. Electric
tunneling effect between graphene sheets originating from the nanoscale is taken into account.

The electric power, Pelec of the system in actual configuration is defined by

Pelec =

∫
Ωt

ω(b)(x) dV +

∫
Γt

ω(s)(x) dS, (8)

where the density functions ω(b) and ω(s) are the bulk and surface density functions expressed by

ω(b)(x) =
1

2
j(x).E(x), and ω(s)(x) =

1

2
js(x).Es(x). (9)

In these equations above,E(x) and j(x) denote to the electric field and current density respectively, and
E(x) is related to the electric potential φ by E(x) = −∇xφ(x) where ∇x is the gradient with respect
to the Eulerian coordinate, x. Besides,Es(x) and js(x) are the surface electric field and surface current
density with respect to the graphene sheets, where Es = Ist.E with Ist = I−n(x)⊗n(x) the projector
operator characterizing the projection of a vector along the tangent plane to Γt at a point x ∈ Γt and
n(x) is the unit normal vector to Γt in actual configuration.

The local constitutive equations relating j and E are nonlinear as :

j =

{
K

(p)
0 E if d(x) > dcut,

G(E, d(x)) E
|E| if d(x) < dcut

(10)

where dcut is a cut-off distance above which the tunneling effect can be neglected, and K
(p)
0 is the

second-order tensor of electric conductivity of the polymer when neglecting tunneling effect. The poly-
mer matrix is assumed to have an isotropic conductivity, i.e.K(p)

0 = k
(p)
0 I. Note that the relatively high

value of k(p)
0 = 10−10 S.m−1 for polymer is choosen to assure the convergence of FEM framework to

due the very high contrast between the conductivity of graphene and polymer matrix. The field, d(x),
called the distance function, is defined as the sum of the two smallest distances between the position x

and the two neighbouring graphene sheets. This function is updated for all deformed configurations of
RVE.

An explicit formula for the electric tunneling effect through a potential square barrier was first derived
by Simmons [12] as :

G (E, d (x)) = 2.2e3

8πhpΦ0
‖E‖2 exp

[
−8πΦ0

√
2mΦ0

2.96hpe
1
‖E‖

]
. . . (11)

+3e2
√

2mΦ0

2h2p
‖E‖ exp

[
−4π

√
2mΦ0
hp

1
d(x)

]
(12)

where Φ0 is the energy barrier height that the electrons cross and hp, e andm denote Plank’s constant,
the charge of an electron and a material parameter.
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The surface current density js of the graphene sheet Γt is related to the surface electric field,Es through :

js(x) = K(s)Es (13)

where

K(s) = hK?, K? = K(g) −
(
K(g)n(x)

)
⊗
(
K(g)n(x)

)
K(g) : (n(x)⊗ n(x))

. (14)

Here, h is the thickness of graphene sheets and K(g) denotes the second-order electric conductivity
tensor of the bulk graphite, which is given by

K(g) = k
(g)
‖ I

(s)
t + k

(g)
⊥ n(x)⊗ n(x) (15)

where k(g)
‖ = 83200 S.m−1 and k(g)

⊥ = 83.2 S.m−1 are the conductivity parameter of graphen multi-
layer from [13].

We use a FEM to discretize the solution space, linear tetrahedrons for bulk part and linear triangles for
graphene sheets. A Newton-Raphson procedure is used to solve this non-linear problem step by step at
small increment, ∆E, of effective electric field [2].

The problem being nonlinear, the effective conductivity is the incremental one dependent on the intensity
and history of the applied electric field, which is defined as

(
KT

)
ij

(Ē) =
∂j̄i(Ē)

∂Ēj
(16)

where j̄ and E denote the effective current density and effective electric field of the RVE respectively
defined by :

j̄ =
1

‖Ωt‖

∫
Ωt

jdV +
1

‖Ωt‖

∫
Γt

j(s) dS, Ē =
1

‖Ωt‖

∫
Ωt

E dV. (17)

4.2 Evolution of electrical properties under stretching of the com-
posite

In this section, we study the impact of both streching and decohesion at the graphene polymer interface on
the electric conductivity. Indeed, the conductivity is controled by tunneling effect, that depends strongly
of ditance between graphene. Thefore, we impose an macroscopic elongation, ε = ε11e1 ⊗ e1, on the
RVEs, from ε11 = 0% to 10%. Due to the long comptutational time, only one RVE microstructure is
randomly studied for each graphene volume fraction.

The deformed microstructures are stored for each 1% increment of deformation and the distance func-
tion, d(x), is updated. Introducing the new distance function, the electrical conductivities at different
effective strain ε11 are shown in Fig. 6. The boundary between insulator and condutor is defined to be
10−8 S/m, below which the material is supposed to be insulator. On the contrary, it is conductor. Focu-
sing on the electrical conductivity along the direction of deformation (KT )11, we can observe in Fig.
6 (a) that the mechanical deformation has little effect on the electrical conductivity of the nanocom-
posites when the graphene volume fraction is below the percolation threshold, f < fc = 0.52 vol%.
When the graphene volume fraction is above the percolation threshold (f > fc = 0.52 vol%), the
electrical conductivity (KT )11 decreases with the applied elongation, but it should be noted that the
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nanocomposites remains conductor. However, if the graphene volume fraction is around the percolation
threshold (f ≈ fc = 0.52 vol%), a sharp decrease of the electrical conductivity can be seen when the
nanocomposites is subjected to strain, which is regarded as a transition point from conductor to insu-
lator. For instance, with 0.66 vol% graphene the transition point of the sample is ε11 ≈ 3%, and with
f = fc = 0.52 vol% graphene it is ε11 ≈ 10%.

Observed this typical conductor-to-insulator transition for the composite with f = 0.66 vol% graphene
by the proposed model, we compare the effective conductivity with the results which are estimated
without considering the the decohesion between graphene and polymer matrix (i.e. we impose JuK =

0). It can be seen on Fig. 6 (b) that neglecting the cohesive interface, the transition point increases
from ε11 ≈ 3% to 8%, which shows the important role of decohesion at the interface in predicting
the piezoresisitivity properties of polymer graphene nanocomposite. It is interesting to note that it is
theoretically possible to design a composite which can go from conductor to insulator by varying the
applied strain on the system. This transition can be inducedmainly by the decohesion for weak interfaces,
or only by strain for a stronger interface but for a more important applied elongation.
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Figure 6 – (a)Effective electrical conductivity of graphene reinforced nanocomposites, (KT )11, as a
function of the deformation for various graphene volume fraction. Barrier height between graphene
and polymer matrix is set to be 0.17 eV, and graphene aspect ratio is 75. The applied electric field is
0.0025V/nm. ; (b) Effective electric conductivity (KT )11 as a function of effective strain ε11 for the
composite with 0.66 vol% graphene both with and without considering the cohesive interface. Φ0 =
0.17.

Moreover, the influence of barrier height, Φ0, between graphene and polymer is presented in Fig. 7
for the configuration with 0.66 vol% graphene sheets, which is just above the percolation threshold,
fc, and exhibits the conductor-to-insulator transition. It can be noted that effective conductivity of the
composites decreases with the increasing barrier height, because the tunneling current goes down along
the growing barrier height according to Eq. 12 and results in [4]. For the elongation ε11 = 3%, the sharp
decrease of the electric conductivity can be observed at both Φ0 = 0.17 eV and Φ0 = 0.3 eV. However,
when the barrier height increases to 0.5 eV, the electric conductivity of the insulating composite doesn’t
vary a lot with the increasing effective strain. This phenomenon gives a view that the polymer matrix
would also be taken into account for the material design to obtain the special electro-mehanical function.
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Figure 7 – Effective electric conductivity (KT )11 as a function of effective strain ε11 for the composite
with 0.66 vol% graphene at barrier height Φ0 = 0.17, 0.3 and 0.5 eV respectively.

5 Conclusion
In this paper, we identified a CZ model using MD simulations. The CZ model has enriched a nonlinear
mechanical model where graphene sheets are modeled by imperfect interfaces, i.e. a combination of
an elastic membrane and a CZ model. Finally, the mechanical model allowed us to generate deformed
RVEs to study influence of strain and interfacial decohesion on the conductivity of graphene/polymer
nanocomposites. An electric continuum model, that incorporates the tunneling effect, have been used to
study the effective conductivity and the influence of the macroscopic elongation, the interfacial decohe-
sion and the potential barrier height.

This multiscale and multiphysics approach has shown the existence of a piezoresistive effect for gra-
phene/polymer nanocomposites. This effect is very significant for graphene volume fraction just above
the percolation threshold because a conductor-insulator transition is observed for elongations above 2%.
In addition, the model has demonstrated the importance of decohesion on the conductor-insulator tran-
sition. Indeed, the transition appears for an elongation of 8% instead of 2%, when the interfacial deco-
hesion is removed in the mechanical model.
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