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Abstract:

This paper investigates the passive mitigation of a squeal noise problem in nonlinear dry friction sys-
tems with uncertain parameters by means of Nonlinear Energy Sinks (NESs). The study is based on a
mechanical system which is composed of two ungrounded NESs attached to the well-known Hultèn’s
two degrees of freedom model. The random dispersions of the friction coefficient and the damping ratio
make the system unstable. In fact, the sensitivity of these parameters is such that the steady state of
the mechanical system is discontinuous and presents a jump. This jump induces areas in which the ef-
ficiency of the NESs is either high or low. Two approaches using generalized Polynomial Chaos (gPC)
are developed to identify this jump and to predict the boundary values of the uncertain parameters
for which the NESs can act or not. The gPC methods prove their capacities to predict the discontinu-
ity. Thus, this analysis allows to estimate the Propensity to undergo an Harmless Steady-State Regime
(PHSSR) of the oscillation by the NESs. Finally, the results are compared with the prohibitive Monte-
Carlo (MC) method which is considered as the reference method. There is a good compromise between
computational cost and accuracy using the gPC methods.

Keywords: Friction-induced vibration, Nonlinear Energy Sinks, Uncertainty,
Robust approach, generalized Polynomial Chaos.
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1 Introduction

In the working process of the braking system, squealing noise may be produced if the system comes into
an unstable state. It may affect the user comfort and increases the customer complaints. Developing
strategies to better understanding and control instabilities is therefore crucial.

Several researchers have been developed to understand the mechanisms generating noise and to predict
it [1, 2, 3]. Friction-induced vibrations or dynamic instabilities are the scientific terms almost used.
These phenomena can appear by the generation of Limit Cycle Oscillation (LCO) induced by dry fric-
tion. They are explained, in most studies of self-excited systems, by the coupling of the tangential and
normal modes [4, 5, 6]. As a way to model these dynamic instabilities related to friction, the well-
known two degrees of freedom Hultèn’s model [7, 8] has been widely used and it is also considred as
the primary system in this paper.

In order to mitigate LCO, we propose to use the concept of Targeted Energy Transfer (TET). In the last
decades, TET has become an important passive control technique for reducing or eliminating unwanted
vibrations [9]. It consists to attach a nonlinear device also named Nonlinear Energy Sink (NES) to the
main system. The NES represents a nonlinear spring mass damper with a nonlinear stiffness, typically
cubic as considered in this work. It can adapt itself to the main system that it is attached to without
being tuned to a specific frequency.

NES has been widely studied theoretically and experimentally. It has been applied in several applica-
tions as for vibration mitigation [10], noise reduction [11] or seismic mitigation [12]. In recent years,
particular attention has been paid for the NES design in deterministic approach [13] and also in prob-
abilistic approach incorporating uncertainty in the parameters of the model [14]. In fact, uncertainty
might have a large effect on the performance of NES. In the previous work by the authors [15], two
ungrounded NESs are coupled to the well-known Hultèn’s model in order to mitigate or eliminate
squeaking noise in the braking system. Related to the dispersion of some uncertain parameters (here
the friction coefficient), the authors classified the steady-state response regimes in two main regimes:
the first is mitigated regimes which are composed by complete suppression regimes, periodic response
regimes and strongly modulated responses regimes and the second is unmitigated regimes. The authors
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showed that the prediction of the boundary value between strongly modulated responses and no mitiga-
tion responses is not performed. For that, it becomes necessary to take into account these uncertainties
in the study of the dynamical behavior of the system.

In the literature, several probabilistic approaches are used for propagating uncertainties in a determin-
istic model (DM) of a mechanical system and then to evaluate the quantity of Interest (QoI) which is a
response from the DM. The generalized Polynomial Chaos (gPC) method is a well-known metamodel
using for quantification of uncertainties. It is a less costly alternative to the Monte Carlo (MC) ap-
proach which is often used as reference [16]. The gPC method expands the QoI of the DM in series
of polynomials of uncertain variables. Many papers using the gPC method have been published as for
the stability analysis of a break system [17, 18] and more recently for the stability analysis of a clutch
system [19].

In this paper, the well-known Hultèn’s model coupled to two ungrounded NESs is used. As explained
above, a friction system coupled to NES may be in a regime with harmful LCO or not related to the
dispersion of the uncertain parameters. Moreover, the transition from the mitigated regimes to the
unmitigated regimes implies a jump in the steady-state amplitude profiles. Thus, the efficiency of the
NES to reduce or eliminate squealing noise can switch from high to low for a slight change of the
uncertain parameters. The aim of this paper is therefore to develop a method for robust modelling
NES by locating this discontinuity in the dynamical behavior of the system and then to predict, with
a low computational cost, the Propensity of the PHSSR. For that, two techniques using generalized
Polynomial Chaos are investigated.

The article is constructed as follows: In Section 2, the gPC theory is presented. In Section 3, the
two degrees-of-freedom selfexcited model coupled to NESs is introduced. In Section 4, the problem
statement is formulated. In Section 5, the two jump detection methods using the gPC are developed. In
Section 6, the results of the method presented in Section 5 is shown. Finally, conclusions are given in
Section 7.

2 generalized Polynomial Chaos theory

2.1 generalized Polynomial Chaos
The generalized Polynomial Chaos (gPC) theory has been introduced by Wiener [20] and launched by
Ghanem and Spanos [21]. The representation in the base of gPC called also Wiener-Hermite develop-
ment, allows a description of the random second order function.
Consider (Ω,β,Pr) a probability space where Ω is the sample space of the random events ω, β is the
σ-algebra of the subsets of Ω and Pr is the probability measure.

Let µ(µ1, ..., µr) is a vector of r real parameters supposed to be uniformly distributed within a given in-
terval [a, b]r and ξ(ξ1, ..., ξr) is a vector of r independent random variables within[−1, 1]r and obtained
as

µj(ξj) =
aj + bj

2
+
bj − aj

2
ξj , (j = 1, . . . , r). (1)

The generalized Cameron-Martin theorem [22] determined that it is possible to express a random pro-
cess X(ξ) called also the Quantity of Interest ( QoI ) with a truncated orthogonal polynomial function
series such as
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X(ξ) ≈
Np∑

j=0

x̄jφj(ξ), (2)

where x̄j are the gPC coefficients of the stochastic process X(ξ), φj(ξ) are orthogonal polynomial
functions and Np = (p+r)!

p!r! − 1 where p is the order of the gPC and r is the number of the uncertain
parameters [23].

The polynomials φj is an orthogonal basis in the Hilbert space L2(Ω, β, Pr) with the following orthog-
onality relation:

〈φi, φj〉 = 〈φi, φi〉δij (3)

where δij denotes the Kronecker delta δij =





0 if i 6= j

1 if i = j

and 〈φi, φi〉 =
∫
φiφiW (ξ)dξ where W (ξ) is the probability density function of ξ.

In this paper, the gPC coefficients are determined using a non-intrusive methods from a quite number
of values of the QoI, obtained from numerical simulations of the determinstic Model (DM) presented
in the Section 3. The non-intrusive method used is the regression approach which requires a minimum
of Q = kNp (where k is a small integer usually equal to 2 or 3) simulations to built the coefficients.
The Latin Hypercube Samples (LHS) method [24] are used to perform these Q simulations.

Using the regression approach, the coefficients are determined through the minimization of the criterion
[25] given by

ε2reg =

Q∑

q=1


X

(
ξ(q)
)
−

Np∑

j=0

x̄jφj

(
ξ(q)
)


2

, (4)

where ξ(q) =
(
ξ
(q)
1 , ..., ξ

(q)
r

)
, with q = 1, ..., Q, is the Numerical Experimental Design (NED) chosen

from the LHS method. X
(
ξ(q)
)

is the vector of the corresponding evaluations of the DM.

Finally, the gPC coefficients x̄j are defined by

x̄ =
(
φT (ξ(q))φ(ξ(q))

)−1
φT (ξ(q))X(ξ(q)), (5)

where x̄ = (x̄j , . . . , x̄Q) and φ(ξ(q)) is the matrix defined by

φ(ξ(q)) =




φ0(ξ
(1)) . . . φNp−1(ξ

(1))
...

. . .
...

φ0(ξ
(Q)) . . . φNp−1(ξ

(Q))


 . (6)

2.2 Criterion for choosing the order of truncation
In this section, we present the criteria for choosing the optimal order of the truncated polynomial chaos
expansion (see Eq. (2)). To obtain a good accuracy of the gPC, a high polynomial order is required
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and consequently a high computational cost. It is therefore necessary to determine the optimal order of
truncation in terms of accuracy and computational cost.

Let x̄j,p and x̄j,p−1 the vectors of the gPC coefficients evaluating respectively by two successive order
developments p and p− 1. The corresponding evaluations of the QoI by the gPC are given by:





Xp(ξ) ≈
Np∑

j=0

x̄jφj(ξ)

Xp−1(ξ) ≈
Np−1∑

j=0

x̄jφj(ξ)

(7)

According to the statistical characteristics of the gPC, we have:





x̂p = x̂p−1 = x̄0

σ2p=
1

2r

Np∑

j=1

x̄2j 〈φ2j 〉

σ2p−1=
1

2r

Np−1∑

j=1

x̄2j 〈φ2j 〉

(8)

where x̂p is the mean and σ2p is the variance of the QoI by the gPC in the order p.

The error of variance eσ2,p between two successive orders gPC is given by:

eσ2,p = σ2p − σ2p−1 =
1

2r

Np∑

j=Np−1

x̄2j 〈φ2j 〉 (9)

The mean error (in the sense of the least squares) between two successive order developments is given
by:

ε2p ≈
1

N ′

N ′∑

k=1

(Xp(ξk)−Xp−1(ξk))
2 ≈ 1

N ′

N ′∑

k=1

(

Np∑

j=Np−1+1

x̄jφj(ξk))
2 (10)

where N ′ is the number of samples.

From the orthogonality property of the gPC (Eq. (3)), the last error (Eq. (10)) can be written in the
following form:

ε2p ≈
Np∑

j=Np−1+1

x̄2j 〈φ2j 〉 = eσ2,p (11)

The equation (Eq. (11)) shows a very interesting result; the variance error and the mean least squares
error are approximately equal between two successive order developments. It is the basic for finding a
criterion for choosing the optimal order of truncation.

The criterion is based on the calculation of the decay rate of the relative error of the variance between
two successive order developments and it is given by [26]:



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

•γ

•
γ

c1

c2 {
k2, k

NL
2

}

{
k1, k

NL
1

}

x2

x1

m

NES1

NES2

(a)

NES1

ch

{
kh, k

NL
h

}

h1

(b)

NES2

ch

{
kh, k

NL
h

}

h2

(c)

Figure 1: (a) Mechanical system with NESs. (b) Zoom on the NES1. (c) Zoom on the NES2.

η =
eσ2,p

σ2p
(12)

Note that this criterion (Eq. (12)) can be estimated directly from the gPC coefficients, it is not necessary
to perform additional simulations with the Deterministic Model or with the gPC to calculate these
errors. This characteristic represents a major interest of the gPC method

3 Two degrees-of-freedom selfexcited model coupled to NESs
The system considered in this work is composed by the two degrees-of-freedom (DOF) Hultèn’s model
[7, 8], which represents the primary system, coupled to two identical NESs with masses mh, damp-
ing coefficients ch and cubic stiffnesses kNLh . The NESs are attached on the primary system in an
ungrounded configuration as shown in Fig. 1.

The equations described the mechanical system are given by :

d2x1
dt2

+ η1ω1
dx1
dt

+ ω2
1x1 − γω2

2x2 + ϕ1x
3
1 − γϕ2x

3
2+

µω1

(
dx1
dt
− dh1

dt

)
+ ξh (x1 − h1) + ϕh (x1 − h1)3 = 0

ε
d2h1
dt2

+ µω1

(
dh1
dt
− dx1

dt

)
+ ξh (h1 − x1) + ϕh (h1 − x1)3 = 0

d2x2
dt2

+ η2ω2
dx2
dt

+ ω2
2x2 + γω2

1x1 + γϕ1x
3
1 + ϕ2x

3
2+

µω1

(
dx2
dt
− dh2

dt

)
+ ξh (x2 − h2)+ ϕh (x2 − h2)3 = 0

ε
d2h2
dt2

+ µω1

(
dh2
dt
− dx2

dt

)
+ ξh (h2 − x2) + ϕh (h2 − x2)3 = 0,

(13a)

(13b)

(13c)

(13d)

where h1(t) and h2(t) (respectively x1(t) and x2(t)) represent the NESs displacements (respectively
the displacements of the primary system), ηi = ci/

√
mki, ωi =

√
ki/m, ϕi = kNLi /m (with i = 1, 2),
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ε = mh/m assuming 0.01 < ε < 0.1 , ξh = kh/m, µ = ch/
√
mk1 and ϕh = kNLh /m.

4 Problem statement
We focus our analysis on the capacity of the NESs to suppress or mitigate LCOs caused by friction-
induced instabilities. An example of the direct numerical integration of the system with and without
NESs is plotted in Fig. 2 which shows the displacements x1(t) as a function of the time. Four different
values of the friction coefficient are used: γ = 0.16, γ = 0.18, γ = 0.2 and γ = 0.22, the other
parameters are set to

ω1 = 2π100, ω2 = 2π85,

η1 = 0.02, η2 = 0.06, ϕ1 = 105, ϕ2 = 0,

ε = 0.05, ξh = 0.001, µ = 0.02, ϕh = 1.4 · 105.
(14)

Moreover, the calculation was performed on 4 seconds in order to be sure that the steady-state has been
reached.

Depending on the value of the uncertain parameter, Fig. 2 schows four main types of steady-state
regimes generated when two NESs is attached on the primary system: complete suppression of the
instability(Fig. 2(a)), mitigation through Periodic Response (PR, Fig. 2(b)), mitigation through Strongly
Modulated Response (SMR, Fig. 2(c)) or no mitigation (Fig. 2(d)). Bergeot et al. [15] have been shown
these four regimes. Hereafter, mitigated regimes referred to complete suppression, PR and SMR.

We define the amplitudeAwNES1 of the variables x1 of the coupled system (13) and within a steady-state
regime as:

AwNES1 =
max

[
xSSR1 (t)

]
−min

[
xSSR1 (t)

]

2
, (15)

where xSSR1 (t) is the times series of the variables x1 obtained from the numerical integration of the
coupled system (13) within the steady-state regime.

The amplitudes AwNES1 and AwoNES1 (the amplitude of the system without NESs) are plotted as a
function of the friction coefficient γ in Fig. 3 for the set of parameters.

The figure highlight a jump (or discontinuity) in the amplitude profile AwNES1 . This discontinuity
corresponds, when γ increases, to the transition from SMR to no suppression regime and separates
mitigated regimes and unmitigated regimes.The value of γ at the jump is called mitigation limit (with
respect to γ) and denoted γml.

In the next section, we present the different methods used in this paper to detect the mitigation limit. The
first method considers directly the mitigation as the QoI. The second method considers the amplitudes
AwNES1 as the QoI, the mitigation is deduced from it.

5 Jump detection methods

5.1 The QoI is the mitigation limit
In the first case, the mitigation limit is the quantity of interest. The method is presented in Fig. 4. It
involves evaluating the mitigation limit with respect to a deterministic parameter (here we assume that
β is determinist) for a given values of friction coefficicient γ.
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(a) Complete suppression, γ = 0.16 (b) Mitigation: PR, γ = 0.18

(c) Mitigation: SMR, γ = 0.2 (d) No suppression, γ = 0.22

Figure 2: Comparison between time serie x1(t) resulting from the numerical integration of the braking
system with and without NESs. The set of parameters (14) is used.

In order to apply the gPC, the Numerical Experimental Design of the friction coefficient is built using
the LHS method (see Sect.2). Then the AwNES1 is calculated as a function of the deterministic damping
ratio and in a given value of the uncertain friction coefficient. Fig. 5 shows two examples of the variation
of AwNES1 and AwoNES1 as a function of 250 deterministic samples of β ∈ [1.2 23] (Fig. 5(a) for
γ = 0.3 and Fig. 5(b) for γ = 0.4). Then the stability analysis is performed in order to detect the
bifurcation point. We denote by βwoNESb the bifurcation point without NESs and βwNESb with NESs.
This study allows us to delimit the stable and the unstable zones of the system. Now the gPC theory
is applied, the amplitude AwNES1 is evaluated only in the unstable zone when β ∈ [1.2 βwNESb ]. The
mitigation limit is then detected.

5.2 The QoI is the amplitude of displacement
In this section, we propose another technique to locate the discontinuity. The amplitude of displacement
is now considered as the quantity of interest. Fig. 6 shows the different steps of this method. The
damping ratio and the friction coefficient are considered both as uncertain parameters. The Numerical
Experimental Design is then built using the LHS method (see Sect.2) with Q simulations. After the
construction of the gPC coefficient, the amplitude AwNES1 is evaluated using the gPC theory. Then, for
a given value of β, the derivative of AwNES1 is calculated (see Fig. 7). Finally, the mitigation limit is
detected.
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Figure 3: Amplitudes AwNES1 and AwoNES1 as a function of the friction coefficient γ. The set of
parameters (14) is used.

6 Application and results
In this section, the method presented in Sect. 5 is applied to locate the discontinuity in the steady-state
amplitude profiles AwNES1 (see Eq. (15) and Fig. 3) of the system under study (13).

Then the PHSSR of the oscillation by the NESs is estimated. We compute a set of Stotal samples of the
uncertain parameters within the considered uncertain space and following their distribution law. Then,
the PHSSR is defined as follows

PHSSR =
SHSSR

Stotal
× 100 (16)

where SHSSR is the number of samples within the region of uncertain parameters space in which the
LCO of the system is mitigated or the system is stable.

6.1 Reference study
The reference is evaluated with the two algorithms (see Fig. 4 and Fig. 6). In the case that the mitigation
limit is the quantity of interest, 10 000 random iterations of γ and 250 deterministic samples of β are
used. The number of simulations is equal to 250 000 (250 x 10 000). In the case that AwNES1 is the
quantity of interest, 10 000 random iterations of the two uncertain parameters γ and β are used (see
Fig. 8). The number of simulations is equal to 10 000 (100 x 100). The result of the reference is shown
in Fig. 9. The value of the PHSSR is equal to 92.11% as shown in Tab. 1.

Table 1: Reference results

PHSSR(%)
Number of

simulations using
algorithm Fig. 4

Number of
simulations using
algorithm Fig. 6

92.11 250 000 10 000
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Deterministic generation of Nβ values of the
damping ratio β ∈ [βmin  , βmax] 

AwNES (γ, βi) - AwNES(γ, βi+1) < θ 

 
Stability study: finding the bifurcation value

βb
wNES 

 

 
Evaluate the amplitude of displacement

AwNES  using the gPC
(β∈[βmin ,βb

wNES])  Eq(2)  

Detect the mitigation limit 

 

 
Build the the PC coefficients  

Eq(5) 

Build the NED of Q samples of the friction
coefficient γ 

Figure 4: Algorithm applied to detect the jump when the quantity of interest is the mitigation limit.
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Figure 5: The amplitudes of displacement with and without NESs as a function of β: (a) γ = 0.3; (b)
γ = 0.4.

Evaluation of the amplitude of displacement 
AwNES  using the gPC Eq(2)  

(β ∈ [βmin  , βbwNES]  and γ∈ [γmin  , γmax]) 

Evaluation of  dAwNES / dγ: the derivative
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Detect the maximum derivative   

      Detect the mitigation limit 
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Figure 6: Algorithm applied to detect the jump in the case that the quantity of interest is the amplitude
of displacement.
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Figure 7: Example of the variation of the amplitude of displacement with NESs as a function of γ: (a)
β = 4.4222; (b) β = 6.7444.
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Figure 8: 10 000 deterministic simulations of the amplitude of displacement with NESs as a function of
γ and β.
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Figure 9: Evolution of the mitigation limit and Hopf bifuraction points with and without NESs using the
10 000 simulations of the reference. 1: Linear stability without NESs. 2: Linear stability with NESs. 3:
Mitigation regimes (PR or SMR). 4: No mitigated regimes.

6.2 Results of the gPC approach - QoI is the mitigation limit
In this section, the algorithm presented in Fig. 4 is applied to estimate the QoI (mitigation limit) and
the PHSSR.

The gPC order is changed from p = 1 to p = 12. As described in Sect. 2.1, the Latin Hypercube
Samples (LHS) method is used to build the gPC coefficients using Q simulations where Q = kNp with
k = 2.

Fig. 10 shows the results of the proposed algorithm to estimate the mitigation limit. The gPC order p is
respectively equal to 2 in Fig. 10(a) and 8 in Fig. 10(b).

The different criteria illustrated in Sect. 2.2 and the comparison between the reference and the proposed
method are plotted in Fig. 11. The error curves between the gPC and the reference and also between two
successive chaos developments allow to verify that the criterion between two successive orders allows
to choose the optimal order of truncation without knowledge of the reference. Moreover, based on the
different errors plotted in Fig. 11(a), (b) and (c), p = 6 can be chosen as the optimal order to correctly
model the quantity of interest. But for the determination of the PHSSR, the study of the error plotted in
Fig. 11(d) shows that the order p = 1 is sufficient.

Tab. 2 shows the results for p = 1, 2, 6, 8 and 12. In the case where p = 1, the PHSSR is equal to 92%

which leads to a relative error of the PHSSR compared with the reference equals to 0.119%. The mean
relative error between the reference and the gPC is equal to 3.92% and the number of simulations is
equal to 1000. In the case where p = 6, the PHSSR is equal to 92.12% which leads to a relative error of
the PHSSR compared with the reference equals to 0.01%. The number of simulations increases from
1000 for p = 1 to 6500 for p = 8.
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Figure 10: The mitigation limit (γml,βml) : (a) p = 2; (b) p = 8.
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Figure 11: Different errors between the reference and the gPC: (a) Mean error in the sense of least
squares; (b) Decay rate %; (c) Relative error of the QoI between reference and gPC; (d) Relative error
of the PHSSR.
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Table 2: Results using the algorithm in Fig. 4.

Order p

Number of
simulations
from p = 1

to p

Mean
relative error

reference-
gPC(%)

Decay
rate(%)

PHSSR(%)

Reltive error
of PHSSR
reference-
gPC(%)

1 1000 3.92 – 92 0.119
2 2000 2.673 0.034 92.06 0.054
6 6500 0.899 0.002 92.12 0.01
8 8750 0.788 0.0013 92.13 0.021
12 12750 0.71 0.001 92.14 0.032

6.3 Results of the gPC approach - QoI is the amplitude of dis-
placement

In order to reduce the prohibitive cost of the first method, the algorithm presented in Fig. 6 is now
applied to estimate the QoI (the AwNES1 ) and the PHSSR. The gPC order is changed from p = 8 to
p = 20 and Q = 3Np.

Fig. 12 shows the results of the proposed algorithm to estimate the mitigation limit. The gPC order p is
respectively equal to 8 in Fig. 12(a) and 15 in Fig. 12(b).

The comparison between the reference and the proposed method is plotted in Fig. 13. Fig. 13(a) shows
that the mean relative error of the QoI between two successive orders is not correlated with the same
error between the reference and the gPC. On the other hand, Fig. 13(c) shows that the relative error of
the PHSSR between two successive orders and between the reference and the gPC are correlated. Thus
this last criterion and the decay rate allow to choose the optimal order of the gPC, let p = 20.

According to Tab. 3, the PHSSR for p = 20 is equal to 91.66% which leads to a relative error of the
PHSSR compared with the reference equals to 0.488%. The number of simulations for the optimal
order p = 20 represents 7 times less than the number of simulation needed by the method using the
algorithm in Fig. 4 with the optimal order p = 1 and with a relative error of the PHSSR compared with
the reference lower than 0.5%.

Table 3: Results using the algorithm in Fig. 6.

Order p
Number of
simulations

Decay
rate(%)

PHSSR(%)

Reltive error
of PHSSR
reference-
gPC(%)

8 135 2.597 95.78 3.984
12 321 0.925 94.14 2.203
15 501 0.498 93.06 1.031
18 732 1.128 90.53 1.715
20 899 0.331 91.66 0.488
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(a) (b)

Figure 12: The mitigation limit (γml,βml) : (a) p = 8; (b) p = 15.

Order p
0 5 10 15 20

R
el
a
ti
v
e
er
ro
r
o
f
th
e
Q
o
I
(%

)

0

10

20

30

40

50

60

70

80

90

100

Mean between gPC(P) - Reference
Mean between gPC(p) - gPC(p-1)

(a)

Order p
0 5 10 15 20

D
ec
ay

ra
te

η
(%

)

0

1

2

3

4

5

6

7

8

9

10

(b)

Order p
0 5 10 15 20

R
el
at
iv
e
er
ro
r
of

th
e
P
H
S
S
R

(%
)

0

1

2

3

4

5

6

7

8

9

10

gPC(p) - Reference
gPC(p) - gPC(p-1)

(c)

Figure 13: Different errors between the reference and the gPC: (a) Relative error of the mean of the
QoI; (b) Decay rate %. (c) Relative error of the PHSSR.
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7 Conclusion
In this paper, a robust modelling of NES used for the brake squeal reduction is presented. For that, a
simple two DOF analytical model with uncertain parameters is considered. Related to the dispersion of
these uncertain parameters, the coupling of the NES with the model can generate a discontinuity in the
evolution of the LCO. Two methods based on the generalized Polynomial Chaos are addressed in order
to detect the jump. The first is to consider that the quantity of interest which is a response from the DM
as the LCO amplitude and the second is to consider the mitigation limit is the QoI. The aim is to predict
the discontinuity and not to obtain an accurate representation of the LCO amplitude. The results of
these methods are noted in the following. In the case that the QoI is the LCO amplitude, a polynomial
chaos expansion with an order p = 20 must be chosen. In the case that the QoI is the mitigation limit, a
polynomial chaos expansion with an order p = 1 must be chosen. Note that the relative error of PHSSR
between the reference and the gPC in both these two optimal configurations is less than 0.5%. However,
the comparison of the number of simulations allows us to choose which technique is better in terms of
computational cost and accuracy: the method that the QoI is the LCO amplitude is the most adequate.
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