
24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Sensitivity computations by automatic

differentiation of a CFD code based on spectral

differences
J.I. CARDESAa, C. AIRIAUb

a. jcardesa@imft.fr
b. christophe.airiau@imft.fr

Institut de Mécanique des Fluides de Toulouse (IMFT)
2 Allée du Professeur Camille Soula, 31400 Toulouse, France

Résumé :
Le contrôle et l’optimisation en mécanique des fluides dépendent de l’évaluation de sensibilités. Dans
ce travail, on calcule des sensibilités en modifiant un code de simulation en dynamique des fluides
d’ordre élevé basé sur une discrétisation spatiale en différences spectrales. L’approche est complètement
discrète, en faisant appel à la différentiation algorithmique du code source original. L’outil employé,
TAPENADE, peut alors générer deux codes source, un par mode de différentiation : tangent et adjoint.
Les deux codes calculent des sensibilités pour un cas test d’écoulement bidimensionel et incompressible
dans un carré périodique avec un double profil de cisaillement initial. Les sensibilités obtenues par les
deux codes différentiés se distinguent par une erreur de l’ordre de la précision machine, et sont en bon
accord avec celles approximées par différences finies (DF). Une comparaison et une discussion sur les
temps de calcul sont menées, qui dans notre cas où l’on a un système à une seule entrée et sortie penchent
naturellement en faveur du mode tangent. Ce dernier nécessite même un temps de calcul inférieur aux
DF.

Abstract :

Control and optimization in fluid mechanics rely on the computation of flow sensitivities. We com-
pute flow sensitivities by modifying a high-order computational fluid dynamics code which is spatially-
discretized with spectral differences. Our approach is fully discrete, relying on algorithmic differentia-
tion of the original source code. We obtain two transformed codes by using TAPENADE, one for each
differentiation mode : tangent and adjoint. Both codes compute sensitivities in an unsteady test case of
two-dimensional incompressible flow over a periodic cube with an initial double-shear profile. We find
that the sensitivities from both differentiation modes agree to within machine accuracy, and compare
well with those approximated by finite difference (FD) computations. We compare and discuss execu-
tion times, which in our case of a single-input/single-output problem are naturally in favor of the tangent
code. The latter even outperforms the FD computation time.

Mots clefs : Sensitivity analysis, Flow Control, Adjoint Methods, Automatic
Differentiation, Computational Fluid Dynamics



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Introduction
The computation of sensitivities is a prerequisite to the implementation of optimization or flow control
tools in simulation codes for aerodynamics. One route to estimate these sensitivities is to derive a new
set of continuous equations, which need to be discretized in some way and added to the original si-
mulation code [7]. An alternative path is to derive the discrete sensitivity equations by differentiating
the discrete equations in the original simulation code. Two main advantages are often attributed to the
second approach, which are the knowledge of the exact gradient of the discrete objective function [5]
and the easier generalization to higher-order derivatives [6]. Its main disadvantage, however, is that dif-
ferentiating spatially and temporally discretized equations by hand quickly becomes impractical beyond
trivial schemes.

High-order methods adapted to compressible/incompressible fluid flow computations on complex geo-
metries have been recently developed, making them suitable candidates to become industrial tools in the
near future [1]. One such code is JAGUAR [3], developed at C.E.R.F.A.C.S., and which has been vali-
dated against compressible and incompressible test cases. Its excellent scalability, its ability to handle
structured or unstructured grids, its optimized 6-step time integration scheme as well as its high-order
spatial discretization based on spectral differences [8, 9] are all positive features which inevitably come
at a price : the code is long and complex. Its differentiation for sensitivity computations is impractical.
This is why we resorted to algorithmic differentiation software in order to automate this task.

Algorithmic Differentiation
Sometimes referred to as automatic differentiation (AD), it is a tool that takes computer code as in-
put and provides computer code as output. The output code is in the same programming language as
the original code. If the original code computed a set of dependent variables Yi based on independent
variables Xj , then the new code will compute those derivatives dYi/dXj selected by the user. Since
JAGUAR is written in modern FORTRAN, we chose an AD tool compatible with key features from
recent FORTRAN standards and which is currently still supported by a team of developers. This tool is
called TAPENADE [2], developed by I.N.R.I.A. It can differentiate code in one of two modes : tangent
or adjoint. The tangent mode is most suitable when one seeks derivatives of many Yi with respect to
few Xj , while the adjoint mode is mandatory whenever few Yi are to be differentiated with respect to a
large number of variablesXj . The transformations inflicted by the AD tool on the original code will be
radically different between the two differentiation modes, with the adjoint mode producing a new code
which is the most challenging to both generate and recognise.

Test Case
Two-dimensional double shear layer in a periodic square

We consider a two-dimensional incompressible flow in a square periodic domain spanning L = 1 in the
streamwise (x) and vertical (y) directions. The velocity field at the initial instant t0 is given by

u = U tanh [r (y − 1/4)] , y ≤ 1/2 (1)

u = U tanh [r (3/4− y)] , y > 1/2 (2)

v = Uδ sin [2π (x+ 1/4)] , (3)



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

case name ’r40’ ’r80’ ’r160’
r 40 80 160
U 1 0.7072 0.5001

Table 1 – The 3 shear parameters r considered in this study and their corresponding perturbation am-
plitudes U found from Equation (7). In all cases, the initial enstrophy is Ωref = 53.36.

where all quantities are made non-dimensional with L and the streamwise reference velocity U0 = 1 as
follows :

t = t̃ U0/L, y = ỹ/L, x = x̃/L, U = Ũ/U0, r = r̃ L. (4)

The parameters of the problem are U , r and δ. These are the streamwise velocity amplitude, the shear
parameter and the ratio of vertical to streamwise velocity amplitudes, respectively. We set δ = 0.05 for
the remainder of this study so that it is no longer a free parameter. We analyze the evolution of the overall
enstrophy Ω, defined as

Ω =

∫ 1

0

∫ 1

0

1

2
ω2
z dx dy, (5)

where ωz = ∂xv − ∂yu is the vorticity. It can be readily shown from Equations (1)-(3) and (5) that at
t = t0,

Ω =
U2

3

[
6r tanh(r/4)− 2r tanh3(r/4) + 3δ2π2

]
, (6)

and we choose rref = 40 and Uref = 1 to yield the initial enstrophy level Ωref = 53.36 for all our
considered test cases. This implies U = U(r), which can be computed by re-arranging Equation (6) as
follows :

U(r) =
√

3Ωref /
[
6r tanh(r/4)− 2r tanh3(r/4) + 3δ2π2

]1/2 (7)

The initial Reynolds number Re0 = U0L/ν = 1.176× 104 was identical for all our test cases outlined
on Table 1. We show snapshots of ωz for the case ′r160′ at four different instants on Figure 1.

Simulations

The Navier-Stokes equations are solved for the flow described in the previous section using JAGUAR,
with the Mach number set to zero and using 3602 degrees of freedom based on a regular square grid.
The flux point locations followed Legendre collocation in transformed space, the CFL was kept constant
at 0.5 and the Riemann solver was based on the Roe scheme. We compared the output from JAGUAR
against a fully spectral in-house code for periodic incompressible flows (MatSPE), which allowed us to
do grid resolution studies and to validate our simulations. We compare Ω(t) between the fully spectral
code and JAGUAR on Figure 2 (left). The agreement between the two codes is extremely good. We
note that the present study is based on the output and analysis of a serial version of JAGUAR, which we
consider an essential first step before working on the parallel version of JAGUAR.



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Figure 1 – Spatial distribution of ωz/
√

Ωref for case ′r160′ at 4 instants t
√

Ωref = {0, 7, 10, 23} in
the following respective order : top left, top right, bottom left and bottom right.

Sensitivities

We define the following two quantities

J1 = Ω(t) (8)

J2 =

∫ T

0
Ω(t) dt (9)

which, when differentiated with respect to r, yield the two sensitivities we compute by means of AD.
dJ1/dr is a time-dependent sensitivity, while dJ2/dr is not. This implies dJ2/dr can be computed
through AD in both tangent and adjoint modes, while dJ1/dr can only be computed in tangent mode.
Both sensitivities will be compared against the finite difference (FD) estimates, computed with 2 inde-
pendent realisations at r and r + dr, where dr/r = 10−5.



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 r=40, 384x384, MatSPE
r=80, 384x384, MatSPE
r=160, 384x384, MatSPE
r=40, 72x72, p=4, JAGUAR
r=80, 72x72, p=4, JAGUAR
r=160, 72x72, p=4, JAGUAR

0 5 10 15 20 25

-0.4

-0.3

-0.2

-0.1

0

r=40, FD
r=80, FD
r=160, FD
r=40, tangent AD
r=80, tangent AD
r=160, tangent AD

Figure 2 – (left) Evolution of Ω(t) at 3 different values of r, JAGUAR vs. fully spectral and incom-
pressible code MatSPE. The legend includes the number of Fourier modes used in each direction for
the MatSPE simulation (of which 1/3 are zero-padded for dealiasing), while the JAGUAR data includes
parameter p which is the selected order of the spatial discretization of the spectral difference scheme.
The grid used in the JAGUAR simulation was a 72×72 structured mesh which, together with the setting
p = 4, yields 360 degrees of freedom (DoF) per spatial direction. So we are effectively comparing 2562

DoF with MatSPE against 3602 DoF with JAGUAR. (right) Sensitivities dJ1/dr, computed with both
finite differences (FD) and the tangent-differentiated code.

Results and discussion
We modify JAGUAR in order to wrap the part of the code which takes r as input and computes J1(t)
as output. In this form, TAPENADE differentiates the wrapped portion of the code into one which
computes both J1 and dJ1/dr (in tangent mode). We compare this output to the estimate of dJ1/dr
based on FD in Figure 2 (right). The agreement is excellent. The differentiated code is 1.9 times slower
than the non-differentiated code. Since the FD computation takes exactly twice the execution time of the
non-differentiated code, it appears that the higher accuracy of sensitivity computations from AD comes
with the added benefit of a faster computation.

Similarly, we wrap the part of the code which takes r as input and computes J2(t) as output. We use
TAPENADE to differentiate this version of the code in tangent and adjoint modes. The temporal inte-
gration is carried out from t = 0 to the n − th iteration of the time integration loop in JAGUAR, with
n = 104 and n = 2× 104. We show the output of both code sensitivities used with the 2 different time
integration bounds on Table 2, together with the corresponding estimate computed with FD. The results
for dJ2/dr computed with tangent and adjoint derivation modes agree to within numerical round-off
error, while the FD estimate agrees less with the previous two due to the lesser accuracy of FDs. Table 3
shows the time taken by the computations. Both the tangent and the adjoint codes that were run were
kept as output by TAPENADE, so that no further code optimization was carried out. The adjoint mode
is very greedy on time. Initially we ran out of memory since in adjoint mode, a forward code execution
is first carried out where snapshots of the data buffers are stored at every iteration in the time integra-
tion loop. In order to remedy this problem, we use an option of TAPENADE to specify the number
of snapshots one is willing to store, at the expense of additional computation time. This compromise
reflects the challenge of using the adjoint mode for unsteady simulations as we do. We underline that



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

r = 160 T = 104 steps T = 2 · 104 steps
FD -1.416887299988E-003 -4.541873618868E-003
Tangent -1.416883548249268E-003 -4.541868152846180E-003
Adjoint -1.416883548249464E-003 -4.541868152845813E-003

Table 2 – Estimates of dJ2/dr according to 3 different computation methods. Only computed for the
case with r = 160, and for 2 integration intervals.

r = 160 T = 104 steps T = 2 · 104 steps
FD 1.8 hrs(×2) 3.8 hrs(×2)
Tangent 3.1 hrs 6.2 hrs
Adjoint 58.5 hrs 123.2 hrs

Table 3 – Computation time taken by the 3 methods to compute dJ2/dr. A factor of 2 appears in
the finite difference (FD) case since 2 independent runs are required. Only computed for the case with
r = 160, and for 2 integration intervals.

most adjoint CFD computations - for instance using commercial software [10] - are done in stationary
situations through iterative solution procedures with a set number of iterations (of the order of a few
hundred). In these cases, one can do away in adjoint mode by storing only the final fixed-point solution
- see the F.A.Q. section in [11]. This is in stark contrast with our approach, where nonstationarity is
intrinsic to our problem and the backwards time integration must be carried out based on storing and/or
recomputing the intermediate results. Developing strategies to overcome this computational barrier is
the object of current research [4]. We report an execution time in adjoint mode which is longer than in
tangent mode by a factor of 20. We emphasize that in adjoint mode the computation time would remain
approximately constant as we increase the number of variables J2 is differentiated with respect to. In
tangent mode, it would grow linearly with the number of additional variables J2 is differentiated with
respect to. Hence the adjoint mode could still be preferable in those cases where the sensitivity of J2 is
needed with respect to many more parameters.

Conclusions and future work
The maturity of TAPENADE to cope with a modern FORTRAN code for computational fluid dynamics
has allowed us to differentiate modified code in order to obtain sensitivity estimates in a simple test case.
Many lessons have been learnt on the way the source code should bemodified for a correct differentiation
by TAPENADE. Even though the differentiation process is automatic, it should not be regarded as a black
box procedure. The output code requires careful analysis and checking, by means of comparison with
FD or by using tools supplied with TAPENADE.

The simplicity of the test case, from a fluid mechanics point of view, does not preclude more complicated
simulations from being amenable to the same type of code differentiation, since it is the complexity of
the code rather than that of the flow which modulates the performance of TAPENADE. However, more
ambitious simulations will inevitably require the differentiation of the parallel version of JAGUAR. We
are currently working towards differentiating this parallel version, with message passing interface (MPI)
directives being supplied to TAPENADE for tangent- and adjoint-mode differentiation. Our target is set
on the implementation of an optimal control loop.



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Acknowledgements
This work has been financed by a grant from the STAE Foundation for the 3C2T project, managed by
the IRT Saint-Exupery. J.I.C. acknowledges funding from the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement
n. PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by Campus France.
We are very grateful for the help provided by Laurent Hascoët and Valérie Pascual on how to use TA-
PENADE.

Références

[1] F.D.Witherden, A. Jameson, “Future Directions in Computational Fluid Dynamics”, in : 23rd AIAA
Computational Fluid Dynamics Conference, p. 3791, 2017.

[2] L. Hascoët, V. Pascual, “The Tapenade Automatic Differentiation tool : Principles, Model and Spe-
cification”, in : ACM Transactions On Mathematical Software, Vol. 39 (3), 2013.

[3] A. Cassagne, J.F. Boussuge, N. Villedieu, G. Puigt, I. D’Ast, A. Genot, “JAGUAR : a new CFD code
dedicated to massively parallel high-order LES computations on complex geometry”, in : The 50th
3AF International Conference on Applied Aerodynamics (AERO 2015), 2015.

[4] J.C. Hückelheim, J.D. Müller, “Checkpointing with Time Gaps for Unsteady Adjoint CFD”, in :
Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in En-
gineering and Sciences, Springer International Publishing, pp. 117–130, 2019.

[5] M. Giles, N. Pierce, “An introduction to the adjoint approach to design”, in : Flow, turbulence and
combustion, Vol. 65(3-4), pp. 393-415, 2000.

[6] J.E. Peter, R.P. Dwight, “Numerical sensitivity analysis for aerodynamic optimization : A survey of
approaches”, in : Computers & Fluids, Vol. 39(3), pp. 373–391, 2010.

[7] B. Spagnoli, C. Airiau, “Adjoint analysis for noise control in a two-dimensional compressiblemixing
layer”, in : Computers & Fluids, Vol. 37(4), pp. 475–486, 2008.

[8] Y. Liu, M. Vinokur, Z.J. Wang, “Spectral difference method for unstructured grids I : basic formu-
lation”, in : Journal of Computational Physics, Vol. 216(2), pp. 780–801, 2006.

[9] D.A. Kopriva, “A staggered-grid multidomain spectral method for the compressible Navier-Stokes
equations”, in : Journal of Computational Physics, Vol. 143(1), pp. 125–158, 1998.

[10] J. Munoz-Paniagua, J. García, A. Crespo, F. Laspougeas, “Aerodynamic optimization of the nose
shape of a train using the adjoint method”, in : Journal of Applied Fluid Mechanics, Vol. 8(3), pp.
601–612, 2015

[11] https ://www-sop.inria.fr/tropics/tapenade.html


