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Abstract :

The present paper aims to simulate thermal-induced damage in composite materials using the Discrete
Element Method (DEM). We consider a hybrid particulate-lattice model in which discrete elements are
linked by cohesive beam elements. First, a model of thermal expansion is introduced at the scale of
cohesive link. Second, thermo-elastic behavior of a homogeneous continuous medium is predicted and
Discrete Element (DE) results are compared to those obtained by the Finite Element Method (FEM).
Then, the case of a unidirectional composite is discussed and some comparisons are done with the
FEM in terms of Coefficient of Thermal Expansion (CTE) and stress field. Finally, damage effects and
interfacial debonding are taken into account. Results exhibit the ability of the DEM to simulate the
suitable damage mode as a function of thermal conditions.
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age effects, interfacial debonding.

1. Introduction
This work is treated in the framework of CUBISM project funded by INTERREG V program. The main
objective of the project is to develop a pressure and humidity Surface Acoustic Wave (SAW) sensor in
order to follow the drying of refractory materials under high temperature and pressure conditions. More
precisely, we aim to describe and predict the thermo-mechanical behavior of the piezoelectric SAW
substrate under such conditions for a full set of geometrical configurations and materials. Besides, we
expect to take into account the micro-cracks resulting from thermal expansion mismatch between the
substrate and its environment. In the present contribution, our main objective is to set up a numerical
approach enabling to respond to the above-mentioned issues according to the three following points.
First, it has to predict the thermo-mechanical behavior of a given material under potential complex
solicitations and severe thermal conditions. Then, the model must take into account the multi-scale
features of the material to accurately evaluate the influence of its microstructure on its macroscopic
behavior. Finally, the numerical approach has to be flexible enough to simulate several damage modes
induced by the thermal expansion mismatch. Please notice that the material substrate has not been
defined yet. That is why, we consider in this paper classic materials such as silica and alumina in order
to validate the numerical approach. The case of a unidirectional composite material is also envisaged
and investigated in this paper.



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Several numerical methods have been developed to investigate the failure of materials caused by the
crack propagation. The most famous of these methods are based on FEM which uses the principles
of fracture mechanics in which the failure condition is defined either by the stress intensity factor or
the energy release rate in the specimen. Due to the limitations of FEM to handle fracture mechanic
issues accurately, the eXtended Finite Element Method (XFEM) [1] is generally preferred to overcome
some difficulties mainly related to mesh updating. However, this method is only well-adapted to describe
independent crack propagation without bifurcation and branching but is not suitable for the management
of opening and closure of numerous micro-cracks simultaneously.

Another class of methods based on a particulate system also exists. The DEM naturally accounts for
discontinuities and is therefore a good alternative to the continuum approaches. The DEMwas originally
used in the field of rockmechanics [2] and has sincewidely been developed to become an efficient tool for
solving mechanical problems in which multiple scales and discontinuities arise. The discrete approach
has also been used in various domains, such as the simulation of tribological granular flow [3], impact
effects on concrete [4], vickers indentation [5], silo discharge [6] and frictional multi-contact problems
[7]. In addition, the DEM allowed to extract an electrical and measurable response of a bearing in
operation [8] and to model heat transfer in continuous medium [9].

Furthermore, several works highlighted the ability of the DEM to simulate the mechanical behavior of
continuous materials. In this context, the continuous medium is discretized using a granular packing
composed of particles bonded at their contact points using cohesive laws. Two main approaches exist in
the literature: the first one is based on the dual spring model (a pair of normal and tangential springs)
[10] and the second one lies on the cohesive beam model [11]. Thus, Potyondy and Cundall [12] con-
sidered a spring model to simulate a rock material, and Schlangen [11] developed the beam model in
2D to describe the cohesion of the brittle materials. More recently, André et al. [13] considered a hy-
brid particulate-lattice model using the same paradigm in 3D problems. Moreover, Leclerc et al. [14]
discussed a similar model which distinguishes itself by the presence of coupling terms between bending
and tangential terms. In other works [15, 16], DEM was later extended to investigate the thermo-elastic
behavior of continuous medium using a model of thermal expansion introduced at the scale of cohesive
link.

The DEM has also been used to simulate cracks initiation and propagation in homogeneous and compos-
ite materials. Researchers have used the discrete approach to study damages of homogeneous materials
such as ceramics [17] and also that of heterogeneous materials such as rock [18] and concrete [19]. In
such a context, it was proved [20] that the cohesive beam element produces more realistic crack pat-
terns than the spring model. However, one has to keep in mind that the failure model also affects the
damage process. Thus, in the case of the beam model, two main microscopic approaches are typically
used in the literature : the Removed Discrete Element Failure (RDEF) based on the deletion of a set of
particles [21] and the Rankine criterion based on the link failure. In specific cases as the indentation test
[21, 22], it was nevertheless verified that the RDEF criterion yields more realistic crack patterns than the
bond-based Rankine criterion. Moreover, please notice that some works [16, 23] introduced interfacial
debonding in composite material using the Discrete Damage Zone Model (DDZM) [24].

The cohesive beam element approach is based on the discretization of a continuous medium by a gran-
ular packing typically composed of spheres in contact, where the cohesion is introduced between each
pair of particles in contact using beam elements. In this work, we use granular packings generated by
Lubachevsky-Stillinger algorithm [25] which enables an accurate control of intrinsec parameters such
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as the compacity, the size of particles and the coordination number which is defined as the average
number of contacts per discrete element. Please notice that all our simulations are carried out using par-
allel MULTICOR3D++ code, in which the hybrid particulate-lattice model discussed by Leclerc [14],
is introduced. In this approach and under several assumptions related to the arrangement of particles,
the granular packing can be described as an equivalent continuous domain the mechanical properties of
which can be related to those of beam elements using a calibration process [14].

The present work is outlined as follows. Section 2 is dedicated to a description of the cohesive beam
model. Section 3 describes a model of thermal expansion which is discussed in the context of a homoge-
neous medium and comparisons are done with the FEM. Then, section 4 is dedicated to an application
to the case of a unidirectional composite. Some comparisons are done with FEM in terms of CTE,
and stress field. Finally, the thermal-induced damage is observed and discussed in the context of the
unidirectional composite.

2. Cohesive beam model
The 3D cohesive beam model (Fig. 1) proposed by Leclerc [14] differs from that developed by André
[13] by the presence of coupling terms of tangential and bending terms. In this approach, the cohesive
contact is described by a set of geometric and physical parameters related to a beam element, namely the
length Lµ, the microscopic Young’s modulus Eµ, the microscopic shear modulus Gµ, the cross-section
Aµ and the quadratic moment Iµ. The cross-section of the beam element is a disk of radius aµ which
depends on the the radii of both particles i and j in contact Ri and Rj and the dimensionless parameter
rµ as follow:

aµ = rµ
Ri +Rj

2
(1)

The cross-section and the quadratic moment of the beam can also be directly connected to rµ as follows:
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Figure 1: Cohesive beam model

The expression of internal cohesive forces is given by the classical Euler-Bernoulli beam theory [26] in
which tensile, bending and torsion effects are taken into account. The following system calculates the
interactions between two particles i and j, expressed in the local coordinate system (~n,~t,~b) associated
to each contact:
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with

• ~n the normal vector aligned with the direction of the beam oriented from i to j, ~t and ~b two
tangential vectors on the contact plan,

• ~F j→i(Fn, Ft, Fb), ~M j→i(Mn,Mt,Mb) respectively the interaction force and moment applied by
the particle j to the particle i, given by their three-components in the local coordinate system (~n,
~t,~b),

• ui,jn and ui,jt,b respectively the normal and tangential displacements associated to the particles i and
j,

• θi,jn and θi,jt,b the components of rotation respectively in torsion and bending associated to particles
i and j,

• kn, kt the classical normal and tangential stiffnesses respectively, and Sn a parameter associated
to the torsion motion, given by:

kn =
EµAµ
Lµ

(4) kt =
12EµIµ
L3
µ

(5) Sn =
2GµIµ
Lµ

(6)

Equations ofmotion for a given particle derive from internal cohesive forces and the numerical resolution
is carried out by an explicit time integration with a formulation based on the Verlet scheme.

The procedure presented by Leclerc [14] enables to identify the macroscopic properties of a sample by
realizing a tensile test on a pattern of cubic shape. A calibration process was set up in order to identify
the local parameters (Eµ and rµ) leading to expected macroscopic properties. In addition, based on his
work, the minimum number of DE required to represent a continuous homogeneous medium using a
representative cubic element is close to 700,000 particles.

3. Thermo-elastic behavior

3.1. Thermal expansion
To describe the thermo-elastic behavior of continuous medium, we introduce a linear thermal expansion
coming from literature and recently used by André [15] and Leclerc [16]. In this study, the initial free
length of each cohesive link changes according to the temperature. It is extended in the case of an
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increase in the temperature of the material and contracted in the case of its decrease (Fig. 2) according
to the following equation:

l(T ) = linitial(1 + αµ ∆T ) (7)

with

• linitial the free length of the cohesive beam at the initial temperature T0

• l(T ) the free length for a given temperature T

• ∆T the temperature variation

• αµ the CTE associated to the cohesive beam

lfinal

(a) T = T

0

(b) T = T

0

 + ΔT

Discrete elements

cohesive beam

linitial

Figure 2: Thermal expansion of the cohesive beam (case of ∆T > 0)

3.2. Homogeneous medium
In the present study, a silica sample of cubic shape composed of 700,000 DE is generated with a
macroscopic Young’s modulus EM = 71 GPa, a Poisson ratio νM = 0.15 and a microscopic CTE
αµ = 2.25 10−5 K−1 associated to cohesive beam. For information, these macroscopic properties cor-
respond to local parameters Eµ = 220 GPa and rµ = 0.722 and the sample has a cubic shape with
length L = 0.1m. A variation of temperature (Fig. 3a) is imposed to the homogeneous medium using
symmetric boundary conditions.

Then, the macroscopic CTE αx, αy and αz of the pattern are determined in the three directions x, y and
z through the displacements of the free faces of the sample. From Figure 3b, two important conclusions
can be drawn. First, the macroscopic CTE does not depend on direction, which verifies the isotropy of
the system. In addition, the macroscopic CTE converges to that associated to the cohesive contact so
that a calibration process for the macroscopic CTE turns out to be useless.

For comparison purposes, a similar study is performed by the FEM, with the same properties of the
material, and the same time step 1.3 10−5s. Figures 4a and b show the evolution of the displacement
of particles belonging to a free face, and the reaction of the opposite face where symmetry boundary
conditions were imposed, as a function of the time, in both approaches. Relative differences between
DEM and FEM are less than 5% which could be considered acceptable. We can conclude that this scope
of results exhibits a quite good adequation between FEM and DEM.
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(a) (b)
Figure 3: Evolution of (a) temperature variation (b) macroscopic CTE as a function of the time

(a) (b)
Figure 4: Evolution of (a) the free edge displacement (b) the force of the opposite face as a function of
the time in case of both approaches

4. Case of a heterogeneous medium with a cylindrical inclusion

4.1. Effective CTE
The present section deals with the simulation of a unidirectional composite (Fig. 5) composed of an
alumina matrix (Em = 350 GPa, νm = 0.22, density ρm = 3900 kg/m3) and a cylindrical metallic
inclusion (Ei = 69 GPa, νi = 0.28, density ρi = 2700 kg/m3). For this purpose, a cubic pattern of
length L = 0.1m composed of 2,000,000 DE is used to represent the sample and symmetric boundary
conditions are set up. Please notice that the number of DE within the inclusion is close to 390,000 DE
which allows to ensure the representativity of the heterogeneous continuous medium [14]. The inclusion
is modeled by a cylinder of radius R = L/4, so that the theoretical volume fraction is fv = 19.6%.

For a variation of the contrast cα between the CTE of the inclusion αi and the matrix αm, the effective
CTE αe of the medium is computed using DEM and FEM and compared to Hashin-Shtrikman (HS)
analytical approach based on the formulation of Levin [27]. In this study, we distinguish between the
axial CTE αaxial and the transverse CTE αtrans. Figures 6a and b show the effective coefficients for a
variation of cα from 1/100 to 100. For information purposes, the relative error between the DEM and
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the FEM is less than 4%.
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Figure 5: Cubic pattern of the unidirectional composite

(a) (b)
Figure 6: Evolution of αd as function of cα with αd = αe

αm
(a) case of cα < 1 (b) case of cα > 1

4.2. Stress field
In this section, we determine the stress field induced by the mismatch of thermal expansion in the case
of the unidirectional composite using the DEM. Besides, we aim to highlight certain comparisons with
the FEM. Symmetry boundary conditions are imposed in this study and cα is set to 3 corresponding
to the real contrast namely αm = 7.5 10−6K−1 and αi = 2.25 10−5K−1. Please keep in mind that
a representative element is associated to each DE in order to represent the continuum medium. The
formulation given by Zhou [28] is used to compute the stress tensor at the scale of a given particle i:

σi =
1

2Ωi
(
1

2

∑
j∈Zi

rij ⊗ fij + fij ⊗ rij) (8)

where σi is the equivalent stress tensor associated to particle i, Ωi is the volume associated to i, fij is
the inter-particle force applied to i by j, rij is the relative position between i and j and Zi is the set of
particles linked to the particle i. Please notice that Ωi is computed as follow:

Ωi =
1

φ
Vi (9)

with φ the volume fraction of DE and Vi the volume of DE i.
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Figure 7 illustrates the positive part of the hydrostatic stress in the YZ cutting plane with X = L/2

in both approaches for a temperature variation ∆T = 10K. We notice a local variability of the stress
field at the scale of particle in DE calculations which is not unexpected since the discrete approach is
sensitive to local fluctuations. In order to confront the DEM with the FEM, indicators are introduced
at positions A(0.5L;0.5L;0.875L), B(0.5L;0.5L;0.5L) and C(0.5L;0.875L;0.875L) (see Tab. 1). This
scope of results exhibits a quite good adequation between FEM and DEM.

(a) (b)
Figure 7: Hydrostatic stress field (Pa) within the unidirectional composite (a) case of FEM (b) case of
the DEM. Extremum values are those predicted by FEM

Table 1: Hydrostatic stress values at A, B and C positions

position A position B position C

σhydro (MPa) DE 13.6 -48.4 4.9
FE 13.6 -45.4 4.7

4.3. Thermal induced damage
We now take into account damage effects and debonding interfacial in the study of the unidirectional
composite. In this section, DE calculations are performed using a time step of 4.4 10−10s and no bound-
ary condition is defined to avoid some boundary effects which could affect the propagation of cracks.
We distinguish between two cases, according to the temperature variation. Please notice that the results
presented in this section are taken in the YZ cutting plane with X = 0.5L.

In the first case, a positive variation of temperature is imposed to the medium with a gradient of 10−4K

by time step. RDEF criterion [21] is introduced at the scale of particle to simulate cracks propagation
of the composite. The RDEF criterion consists in removing the particle and deleting all its links when
a given stress based criterion is reached. The removed particles are excluded from the system and no
longer act on it, resulting in a loss of mass, but this loss is limited to a low ratio of deleted particles.
In this work, we consider the brittle rupture of materials such as alumina and silica. Due to their high
compressive strength, the rupture appears when these materials are submitted to tensile solicitations.
Therefore, the choice of fracture criterion is based on the hydrostatic stress, at particle scale, which is
positive for local tensile solicitations. The hydrostatic stress limit is set to 200 MPa. Figure 8 illustrates
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the positive part of the hydrostatic stress field of the composite before and after failure. Cracks start at
the interface and propagate within the matrix radially, which is in a good agreement with the theoretical
expectations [29].

(a) (b)
Figure 8: Hydrostatic stress field (Pa) in case of ∆T > 0 (a) before and (b) after failure
(b) The black color corresponds to particles removed from the system

In the second case, a negative variation of temperature is imposed to the composite with a gradient
of 10−4K by time step. The interfacial debonding could also be the main phenomenon leading to the
failure of composite. For that purpose, an interfacial model based on the DDZM [24] is introduced. The
main idea is to replace the cohesive links connecting two particles belonging to two different phases by
spring elements. The normal stiffness of the spring elementKΓ

n relates the normal displacement uΓ
n and

the normal force FΓ
n as follows:

FΓ
n = KΓ

nu
Γ
n (10)

In a first linear regime, when uΓ
n < uΓ,c

n where uΓ,c
n is a critical displacement,KΓ

n is constant and equal
to a given stiffnessKΓ,o

n .

In a second non-linear regime, when uΓ
n > uΓ,c

n ,KΓ
n depends on uΓ

n according to an exponential decrease
so that KΓ

n tends to zero for high displacements (see Figure 9). More precisely, in our simulations, the
spring element is broken when uΓ

n > 15uΓ,c
n .

Figures 10a, b, c and d illustrate the positive part of the hydrostatic stress field in the case of ∆T < 0

after 80,000; 170,000; 180,000; and 280,000 time steps. One can notice that the inclusion is totally
debonded after 280,000 time steps. From these results, we conclude that the DEM is quite suitable to
model the thermal-induced damage in brittle medium.

5. Conclusions and perspectives
This contribution presented a significant improvement for the DEM to model the 3D thermal-induced
damage due to thermal expansion. In a first step, a model of thermo-elastic coupling based on a local
model of thermal expansion was developed in the case of a homogeneous continuum medium. In a
second step, the discrete approach was applied to the context of a unidirectional composite. Some
comparisons were done with the FEM in terms of CTE and stress field. In a third step, damage induced
by thermal expansion mismatch was modeled. DEM showed its ability to yield a suitable damage mode,
namely cracks initiation or interfacial debonding, according to the temperature variation.
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Figure 9: FΓ
n − uΓ

n relationship

(a) (b)

(c) (d)

Figure 10: Hydrostatic stress field (Pa) in case of ∆T < 0 (a) after 80,000 time steps (b) after 170,000
time steps (c) after 180,000 time steps (d) after 280,000 time steps
The black color corresponds to spring links broken

In a next future, we aim to develop the present approach to non-linear behaviors. Furthermore, this
approach will be extended for modeling the crack propagation in the context of a multi-inclusion com-
posite medium. Besides, we are also interested in better assessing and controlling the local variability
observed in stress field at the scale of particle.
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