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Abstract:

Material behaviour is often affected by the heterogeneities existing at the microscopic level.
Especially the presence of cracks, voids, etc collectively known as defects, can play a major
role in their overall response. Homogenization can be used to study the influence of these het-
erogeneities and also to estimate the effective properties of a given material. Several research
works have been dedicated to determine the elastic behaviour of a microcracked media. Yet,
thermal properties are not investigated as much. Moreover, the question of unilateral effect
(opening/closing of cracks) still remains an important issue. So, this paper aims to provide
the effective thermal conductivity of a microcracked media with arbitrarily orientated cracks,
either open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute
and Mori-Tanaka) are developed to provide the closed-form expression. In addition, numerical
simulations based on Finite Element Modelling are also performed to validate and analyze the
obtained results.
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1 Introduction

Defects have an influence on the macroscopic behaviour of a material, each on a different scale.
The overall behaviour of the material can be characterized by its microstructure. This transition
from micro-to-macro can be modelled using averaging techniques (homogenization). In this
process, the heterogeneous material is replaced by an equivalent continuous medium. By this
way, one can find the effective properties of a material. Homogenization studies often concen-
trate only on the mechanical behaviour of a microcracked material [1, 2], leaving out thermal
and other properties. But the latter have practical applications too and need to be investigated
[3, 4].
Apart from the orientation of the cracks, opening or closing of microcrack (also known as uni-
lateral effect) can have a different influence on the material, in turn on the overall properties.
Consequences of both induced anisotropy and unilateral effect on the elastic problem have been
studied by some authors [1, 5] but not much for the heat conduction problems. We intend here
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to propose an Eshelby-like modelling approach for the steady state heat transfer and determine
the effective thermal conductivity. We also intend to provide some numerical results in order
to validate and analyze the theoretical results.

2 Theoretical Framework
Current works on the effective thermal properties are influenced by the similarities between
elasticity and steady-state heat conduction variables [6]. Similar to the macroscopic stress and
strain under equilibrium conditions, the macroscopic heat flux Q and temperature gradient
G corresponds to the average values of their respective microscopic quantities q and g under
stationary thermal conditions i.e. G = 〈g〉 andQ = 〈q〉. The linear thermal behaviour is given
by the Fourier law:

q = −λ · g (1)

where λ is the symmetric second order thermal conductivity tensor.
Let us consider a 3D RVE of a microcracked media. Such media exhibits a matrix-inclusion
topology in which each phase exhibits a homogeneous behaviour. A uniform macroscopic
temperature gradient G is imposed at the outer boundary δΩ of the RVE . Assuming an initial
natural state, the microscopic and macroscopic quantities can be linked linearly as [7]:

g(x) = A(x) ·G ∀ x ∈ Ω (2)

where A is the second order temperature gradient localization tensor. Similar to (1), the overall
behaviour of the RVE can be given by:

Q = −λhom ·G (3)

where λhom is the overall thermal conductivity of the microcracked media. Assuming the
condition 〈A〉 = I and (2), the effective thermal conductivity of the microcracked media is
given by:

λhom = λm + fc (λc − λm) · 〈A〉c (4)

where λm (resp. λc) is the conductivity tensor of the matrix (resp. cracks), fc is the cracks
volume fraction and 〈·〉r= 1

Ωr

∫
Ωr
· dΩ denotes the mean value over the volume of the phase r

for r = {m, c}.
The single-inhomogeneity problem studied by Eshelby [8] considers a single ellipsoidal in-
clusion embedded inside an infinite matrix subjected to macroscopic stress or strain tensors at
infinity. This elasticity problem can be extended to thermoelasticity [6, 9]. In such case, the
local temperature gradient in the crack can be approximated by the uniform local field obtained
for an ellipsoid embedded in an infinite matrix subjected to uniform boundary condition G∞.
For our case, let us consider an RVE composed of an initially isotropic homogeneous media
(matrix). Its thermal conductivity tensor is given by λm = λm I (λm is the matrix scalar ther-
mal conductivity). This matrix is weakened by randomly distributed single family of parallel
microcracks (Fig. 1-a). These cracks are modelled as flat oblate ellipsoid (mean semi-axes a
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and c, Fig. 1-b) with a volume fraction fc=4
3
πdω. Here d = Na3 is the scalar crack density

as defined by Budiansky and O’Connell [10] and ω = c/a is their mean aspect ratio. Taking
all this into account and considering n as the unit vector normal to the crack plane, estimated
solutions for localization tensor over the crack’s phase 〈A〉c can be determined. They depend
on the following depolarization tensor SE (similar to the Eshelby tensor of the elastic problem)
[11]:

SE =
(

1− π

2
ω
)
n⊗ n +

π

4
ω (I− n⊗ n) (5)

(a) (b)

Figure 1: (a) RVE with single family of parallel microcracks, (b) penny-shaped crack geometry.

The configuration of the flat cracks corresponds to the limit case where ω → 0. This limit case
has to be introduced at the very end of mathematical developments. As mentioned before, the
unilateral effect is one of the main focus of this work. So, two different results can be obtained at
the end, based on the state of the crack (open or closed). In either case, the cracks are assumed
to be isotropic λc = λc I (λc is the crack’s scalar thermal conductivity) with different value of
λc depending on the state of the crack:

• When the cracks are open, λc = 0, which supports the adiabatic conditions on the crack
lips,

• When the cracks are closed, λc = λ∗, which accounts for some level of heat transfer
continuity; this assumption is inspired by the works of Deudé et al. [5], where closed
cracks are represented by a fictitious isotropic material with scalar conductivity λ∗ 6= 0.

3 Calculation of the effective thermal conductivity

We impose a uniform macroscopic thermal gradient G at the outer boundary δΩ of the RVE.
This is similar to the classical strain-based formulation in elasticity. As a first, we will estimate
the effective conductivity through two different schemes. When there is a dilute concentration
of cracks, it is considered there is no interaction between them. The remote condition in this
case can be given by G∞ = G. Hence, the localization tensor can be given by:

〈A〉dilc =
[
I− SE

(
1− ξ

)]−1

with ξ =
λc
λm

(6)
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Now (4) can be written as

λdil
hom = λm

[
I− 4

3
π d
(
1− ξ

)
T

]
with T = lim

ω→0
ω
[
I− SE

(
1− ξ

)]−1

(7)

For open cracks, one has λc = 0, so ξ = 0, whereas λc = λ∗ 6= 0 i.e. ξ 6= 0 for closed crack.
Taking this into account, the expression for the effective conductivity tensor of the microcracked
media is:

λdil
hom =

λm
[
I− 8

3
d (n⊗ n)

]
if cracks are open

λm I if cracks are closed
(8)

When we are to consider some interactions between cracks, the Mori-Tanaka scheme is used.
The remote condition here is given by G∞ = 〈g〉m. Here the localization tensor is:

〈A〉MT
c = 〈A〉dilc ·

[
(1− fc) I + fc 〈A〉dilc

]−1

=
[
I− SE (1− fc)

(
1− ξ

)]−1

(9)

This leads to:

λMT
hom = λm

(
I +

4

3
π dT

)−1

(10)

As before, the specific behaviour of cracks according to their status gives the following:

λMT
hom =


λm

[
I− 1

1 + 3
8d

(n⊗ n)

]
if cracks are open

λm I if cracks are closed
(11)

Detailed developments can be found in [12].

4 Numerical simulations

In the following, numerical simulations are performed using Finite-Element software Abaqus®.
(X,Y,Z) denotes an orthonormal coordinate system. The simulated volume V is a cube (size
L = 1 m) that follows the steady state heat conduction. The matrix is designed as an unit 3D
solid with its own scalar conductivity λm. Assuming there is only one crack in the volume, the
radius of the crack can be given by a = 3

√
d. It is logical to represent the crack as a seam for

the open state (discontinuous nodes). Yet, it cannot account for the heat transfer during crack
closure. So, the crack is modelled as an ellipsoidal inclusion (3D solid as well) with normal
n belonging to (X,Y) plane and has the scalar conductivity λc. Note that such description
is in line with the theoretical framework. Since creating a crack with zero aspect ratio is not
possible, the cracks are designed with an aspect ratio 0 6= ω << 1 (so fc << 1). Thus, for
a given fc, the value of the scalar conductivity λc determines if the cracks are open (λc = 0)

or closed (λc = λ∗ 6= 0). This description of the unilateral effect is in agreement with the
theoretical model in Section 2. The finite element type used for both the matrix and crack is
quadratic tetrahedron DC3D10 (see Fig. 2-a) and the model has approximately 26500 elements
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and 19000 nodes including 289 nodes on the outer surface (see Fig. 2-b).
Temperatures T1 and T2 (T1 > T2) are applied on the opposite faces of the volume with outer
normals ± X (see Fig. 2-c) while a zero flux condition is imposed on the other 4 faces. Such
boundary condition, namely temperature gradient G = ∆T

L
, creates a heat flux Q inside the

simulated volume. On a global point of view, the 4 faces with zero flux acts as an adiabatic
wall, allowing the heat flux Q to be mainly oriented along the X direction. Therefore, the
effective conductivity of the microcracked media can be given by:

λhom = λhom (X⊗X) with λhom =

∣∣∣∣QX

G

∣∣∣∣ (12)

where heat flux along the X direction QX =
1

A

n∑
i=1

RFLi, A is cross-sectional area and RFLi

is the reaction flux at a node i on the face (+X).

(a) (b)

T
1

T
2

L

(c)

Figure 2: Simulated volume showing: (a) half the inclusion (half the volume hidden), (b) outer
face nodes used for extracting results and (c) boundary condition.

As first illustration, Figure 3 shows the heat flux vector at integration points in a (X,Y) cutting
plane for density d = 0.1. Figure 3-(a) corresponds to the open case (λc = 0) and shows that
the crack acts as a thermal barrier according to the adiabatic behaviour on their lips. Figure
3-(b) corresponds to the closed case (λc = 50% λm) and shows continuity in heat transfer. In
both cases, we see that the heat flux vectors at the outer face with normal −X are not uniform.
Hence, averaging in required. This is in accordance with the definition of the macroscopic
quantities mentioned in Section 2.
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(a) Open crack (b) Closed crack

Figure 3: Heat flux vectors at integration points inside the simulated volume in a (X,Y) cutting
plane.

5 Results and discussion

The general scalar conductivity λ(v) in the direction of unit vector v can be given as λ(v) =

v · λhom · v. Recalling our earlier results from [12], open cracks contribute to the degrada-
tion of the thermal conductivity, mainly along the direction n normal to the crack surface.
This case is true for the simulations as well (see Fig. 4). Both the theoretical and simu-
lated results show us damage induced anisotropy irrespective of the scheme or crack den-
sity. Regarding the theoretical models, we see that as d → 0, λdil

hom ≈ λMT
hom (d = 0.1 in

Fig. 4-a, d = 0.02 in Fig. 4-b). This can be attributed to the fact that as d decreases, the
size of the crack decreases, making the interaction between the cracks less influential and at
one point there is no interaction between the cracks essentially leading to a dilute configura-
tion. We also see that as the crack becomes smaller, so does its influence on the conductivity
(λ(n) ≈ 0.75 λm for d = 0.1 whereas λ(n) ≈ 0.95 λm for d = 0.02). Figure 4 also illustrates
the consistency between the theoretical and simulated results. Even if only one crack is con-
sidered (no interaction case), the length scale separation assumed in theoretical approach is
not applicable for the simulated volume V. That is why simulation curves do not exactly fit the
dilute case.
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Figure 4: Generalized thermal conductivity λ(v) normalized by its initial value for a material
weakened by a single array of parallel open microcracks of unit normal n.

On the other hand, dilute and Mori-Tanaka schemes show that closed cracks do not contribute to
the degradation of conductivity (see (8) and (11)), i.e. the effective conductivity in any direction
is recovered to its initial value at the crack closure. So the generalized scalar conductivity in
unit direction v for closed cracks can be given as: λ(v) = λm, ∀ v. Just like the open crack,
simulated and theoretical results are consistent for the closed crack (see Fig. 5). We also see
that the former has only a negligible amount of degradation of thermal conductivity (less than
0.05% for d = 0.1 and less than 0.01% for d = 0.02 when considering λ∗ = 50% λm).
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(b) d = 0.02

Figure 5: Generalized thermal conductivity λ(v) normalized by its initial value for a material
weakened by a single array of parallel closed microcracks of unit normal n (λ∗ = 50% λm).

From (8) and (11) we know that the theoretical results are not a function of the aspect ratio ω(
λdil

hom = λMT
hom = f(λm, d,n)

)
since they correspond to the limit case ω → 0. But as discussed

earlier, it is not possible to simulate an ellipsoid with zero aspect ratio. So it seems natural to
study the influence of the aspect ratio on the simulated results. Since the maximum degradation
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is along the direction n normal to the crack, we intend to focus only on λ(n). Figure 6-(a)
corresponds to open crack and Figure 6-(b) corresponds to closed crack with fixed values of
dilute and MT denoted for reference. In both cases, the variation in the results is very small
(relative variation is around 0.5% and 0.4% respectively between extreme values of the aspect
ratio). Yet, especially in the closed case, as ω → 0 simulations tend to the full recovery of
λ(n), same as the theoretical models. Note that all the simulations linked to varying aspect
ratio are performed by varying the crack thickness c and keeping the crack density d and radius
a as constant.
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Figure 6: Normal thermal conductivity λ(n) normalized by its initial value for various aspect
ratios

(
ω1 = 10−3, ω2 = 5× 10−3, ω3 = 10−2; d = 0.1

)
.

Also, the theoretical results for the closed case do not depend on the fictitious scalar conduc-
tivity λ∗. This may not be true for the simulations. So, series of simulations were performed
with varying λ∗ and for different aspect ratios (d and a are still constants). The values for λ∗

are given as a proportion of λm such that λ∗ = α λm with α = {1, 5, 10, 25, 50, 80, 100}[%].
Figure 7 shows that indeed there is an influence of the scalar conductivity λ∗ on the thermal
conductivity. For α ≤ 10%, we see drastic decrease in the conductivity, this is due to the fact
that we are slowly approaching the open case (α = 0). We also observe that as ω → 0 the
influence of λ∗ diminishes and representation of closed cracks by means of a 3D ellipsoid with
fictitious scalar conductivity λ∗ becomes independent of the λ∗ value, just like the theoretical
result [12].
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Figure 7: Influence of scalar conductivity λ∗ on the normal thermal conductivity λ(n) normal-
ized by its initial value

(
ω1 = 10−3, ω2 = 5× 10−3, ω3 = 10−2; d = 0.1; log scale is used for

abscissa
)
.

6 Conclusion and perspectives
In this work, we have presented the closed-form expressions for the effective thermal conduc-
tivity of a microcracked media taking into account the steady state heat condition. Special
attention has been paid to the unilateral effect and the consequence of the crack’s state (open or
closed) on the overall thermal behaviour. The consistency between numerical simulations and
theoretical results validates some of the main assumptions of the study, especially regarding
the geometric representation of cracks and the account of closed defect. Further studies could
be conducted to extend such analytic procedure (homogenization and numerical simulations)
to the case of flux-based boundary condition from which effective thermal resistivity can be
derived.
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