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Résumé :
Les instabilités paramétriques peuvent survenir lorsque l’état mécanique d’une structure est modulé pé-
riodiquement dans le temps. Ces instabilités sont souvent traitées comme des phénomènes à éviter par
exemple en génie maritime (roulement paramétrique) mais elles ont parfois été exploitées en mécanique
des fluides (ondes de Faraday) ou dans les systèmes microélectromécaniques (amplification paramé-
trique). Une limitation bien connue pour exploiter pleinement les instabilités paramétriques classiques
basées sur une faible modulation périodique d’un état mécanique est que les forces de friction internes
attenuent très rapidement les résonances paramétriques sous-harmoniques. Pour palier à ces limita-
tions, nous proposons une approche originale qui consiste à moduler de façon extrême l’état mécanique
d’un système, en passant d’un état de vibration libre à un état quasiment divergent. Ce nouveau concept
vibratoire est illustré ici à travers l’analyse numérique et expérimentale d’un pendule électromagné-
tique. Nous trouvons qu’il est possible non seulement d’augmenter considérablement le nombre de ré-
gions d’instabilité sous-harmoniques mais aussi de controller la taille des zones de stabilité, ouvrant
ainsi une voie prometteuse pour la récupération d’énergie large bande et la discrétisation spectrale dans
les systèmes vibratoires.

Abstract :

Parametric instabilities are dynamical instabilities arising when the mechanical state of a structure is
properly modulated in time. It is sometimes seen as a phenomenon to avoid for example with sailing ships
(parametric rolling) but it has also been exploited in vibrating fluids (Faraday waves) or NanoElectro-
Mechanical Systems (parametric amplification). One well-known limitation in fully exploiting classic
parametric instabilities based on small periodic modulation of a mechanical state is that inherent fric-
tion forces rapidly cancel sub-harmonic parametric resonances. To overcome this drawback, we suggest
to formerly modify the state of a mechanical system close to its diverging instability. This original way
of enhancing and controlling parametric instabilities is illustrated here through the numerical and ex-
perimental implementation of an electromagnetic pendulum. Not only we find it is possible to greatly
enhance the number of subharmonic instability regions, but it is feasible to control the width of those
regions, opening a promising way for frequency filtering in NanoElectroMechanical Systems.
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1 Introduction
Nowadays, from the use of buckling for folding [1] to the exploitation of fluttering piezoelectric flags for
energy harvesting [2] or the benefit of parametric resonances for the reduction of parasitic signals in mi-
croelectromechanical systems [3], elastic instabilities eventually occurring in slender elastic structures
are often seen as an opportunity to seize rather than a failure to avoid. Parametric instabilities, found
in many engineering problems [4, 5], can be caused by the self-synchronized periodic modulations of
the elastic state of a slender structure [6]. Although promising for elaborate functionalities, the optimal
use of parametric instabilities in elastic structures is often restricted to micro or nano- electromecha-
nical systems (MEMS or NEMS) where damping is sufficiently low for the principal and subharmonic
instability regions to exist [7]. To overcome this drawback and fully exploit the potential of parametric
instabilities for functionality at any scales, a change of paradigm is necessary : instead of classically
lowering damping to favor parametric excitations from the small modulations of an elastic state, one
could periodically impose a drastic change of elastic state to enhance dynamical instabilities at common
damping (see Fig. 1).

a) c)b) d)

Figure 1 – Modulation of periodic elastic state. a) The Bolotin column : a cantilever beam under a
conservative periodic compressive force is an archetypal example of a structure in periodic elastic state.
b) When reduced on its first vibrational mode, the structure in a) can be modeled as a mass moving in
a periodically time-varying quadratic energy potential. c-d) Stability charts depicting the famous Ma-
thieu’s tongues illustrating the zone of the modulation parameters space where parametric instabilities
occurs. Yellow and red colors show parametric instability regions of period 2T = 4π/Ω or T = 2π/Ω,
respectively. No colors indicate the straight beam of figure a) is neutrally stable. c) With almost no
damping, parametric instabilities emerge even at low amplitude modulation, a property that has been
exploited in MEMS [3]. d) With no damping however, parametric instabilities mostly disappear unless
one finds a way to deal with very large modulation amplitude.

2 System under study and results
Here, we conduct and present the first numerical and experimental dynamical system that allows us to
explore and rationalize the concept of extreme periodic modulation. Our goal is to relatively easily perio-
dically modulate a mechanical system between two very different mechanical states in order to enhance
parametric instabilities even in the presence of classic internal friction forces. To achieve our goal, we
set up in the lab the electromagnetic pendulum shown in Fig.2a). The experiment consists of a magnetic
pendulum that is symmetrically placed between two attracting electromagnets.When the electromagnets
are off, the system is a simple pendulum characterized by a natural frequency ω0 ≈ 9 rad/s as illustrated
in the experimental plot of Fig.2c). When turning the electromagnets on by inputing an electrical current
I , the mechanical state of the pendulum can be drastically modified. In our example of Fig.2, when the
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control parameter I is slightly below Imax = 1.15 A, our system is now naturally oscillating with a
slower natural frequency. And above I = Imax (our diverging threshold), our system is no more oscil-
lating but diverging, on the right or left electromagnet depending on the imperfections in our system.
This mechanical system is therefore a simple first realization of what we coined an extreme parametric
oscillator, because with a single parameter I , we are drastically changing the state of our system, even-
tually from an oscillating to a diverging state. In classical parametric oscillators (parametric pendulums,
Faraday’s experiments, parametric rolling, etc...), this extreme modulation is hardly reachable because
the geometrical of mechanical modulation parameters that come into play (length, gravity, height of the
waves, etc...) are not easily varied on such scales.

a) b) c)

Figure 2 – The electromagnetic parametric oscillator under study. a) A pendulum whose mass is made
of steel, is symmetrically placed between two identical attracting electromagnets that are periodically
turned on (red energy states in b)) and off (blue energy states in b)). Because the symmetric energy
landscape varies drastically, parametric instabilities are enhanced. b) Simplified “Particle in a time-
varying potential well” model. c) Evolution of the natural frequency of the pendulum for various value
of the electrical current I in the two electromagnets when the laters are separated by L = 6 cm. Below
I < Imax ≈ 1.25 A, the pendulum is naturally oscillating if perturbed. Eventually, for I close to the
diverging limit Imax, the natural frequency goes down until it reaches zero, i.e. the mass is no more
oscillating but diverging.

The dynamical behavior of our extreme parametric oscillator of Fig.2 is given in the preliminary ex-
periments of Fig.3 that consist in periodically turning the electromagnets on or off in a square wave
fashion as illustrated in Fig.3a). Fig.3b) shows the experimental stability charts of our electromagnetic
pendulum in the modulation parameters space : period of modulation and amplitude of modulation as
depicted in Fig.3a). The blue triangles indicate that the pendulum is dynamically stable, i.e. that the
pendulum may be slightly vibrating but stay close to the trivial vertical state, in the middle of the elec-
tromagnetic cell. The crosses indicate the modulation parameters for which the mass was parametrically
unstable, i.e. dynamically impacting the electromagnets. The color legend indicates the number of cycles
the pendulum is doing in the emerging nonlinear vibrational regime. Modes with an integer number of
M represent T -periodic unstable regions when the other M numbers represent 2T unstable regions.
It is interesting to note the effect of the extreme parametric modulation. For relatively low modulation
amplitude, I/Imax < 0.8, the pendulum is often stable, except eventually for the first (M = 0.5) or
second (M = 1) instability regions (sometimes the third one M = 1.5 is observed). But for higher
modulation amplitude close to the diverging threshold such as I/Imax = 0.91, it is possible to trigger
highly sub-harmonic instability regions, here up to the 58th instability regions (M = 29, not shown in
the figure) when the current record demonstrated in a microelectromechanical device was found to be
28th [3] ! Since it is possible to trigger vibrational motion with a large range and low values of parame-
tric excitation frequencies, two-states oscillators, or extreme parametric excitation, could be promising
for very large-band energy harvesting devices. Note finally that in parallel, a simple model of linear pa-



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

a) b)

Figure 3 – Pendulum in a time-varying electromagnetic field. a) The electromagnets are now turned on
and off in a square wave fashion with period T . The amplitude of modulation is the electrical current
I when the electromagnets are on. b) Stability chart of the pendulum in the dimensionless modulation
parameter space T/T0 and I/Imax where T0 and Imax represent the natural period when the electroma-
gnets are off and the electrical current at static diverging threshold, respectively. Blue triangles represent
stable states where the mass stays more or less in the middle of the electromagnets. Crosses represent
unstable states where the pendulum dynamically diverges to eventually impact the electromagnets. The
M numbers indicate that themass is doingM×T0 cycles during the half period when the electromagnets
are off.

rametric oscillator has been developed to gain physical insight in the experiments of Fig.3 and establish
simple design laws to characterize the effect of extreme parametric modulation on parametric instabi-
lities. Also, the choice of a square wave signal as modulation function is justified and exploited owing
to the fact that a parametric oscillator with a step modulation function can be modeled by a Meissner
equation [8] for which dynamical stability charts are completely known analytically.
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