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Abstract :

We investigate the unsteady flow of a discrete gas between two infinite moving and impermeable parallel

plates. The first studies of the Couette flow problem in the scope of discrete kinetic theory were carried

out in the steady case with discrete models having only one speed [1]. Only the behavior of the total

density and the mean velocity has been examined. In the unsteady case, a work carried out with a class

of four velocity models with the same modulus made it possible to study the evolution of total density,

tangential and normal velocities as functions of time [2]. The objective of the present study with a ten

velocity discrete model with two different speeds [3], is to study the transition from unsteady flow to

steady flow by analyzing the behavior of the macroscopic variables of the flow (total density, kinetic

temperature, normal and tangential velocities). The problem is solved numerically using the fractional

step method. By varying the Knudsen number Kn, we pass from continuous flows to rarefied flows. The

study therefore focus on finding and evaluating the effects of rarefaction highlighted by other methods

of investigation and analyzing their evolution with time.

Keywords : Kinetic theory ; Discrete velocity models ; Unsteady Couette flow;
Transition ; Steady state.

1 Introduction

The problem of the flow of a gas and the transfer of energy between two infinite and mobile parallel

plates, although it can be considered as a simple problem of gas dynamics, does not have exact solutions

obtained by the resolution of the complete Boltzmann equation. When the flow is steady, the discrete

kinetic theory allows to solve analytically this problem in certain cases and to make a qualitative study of

the solutions. The first studies of the Couette flow problem in discrete kinetic theory were carried out with

one speed discrete velocity models [1]. Since these models can not account for energetic phenomena,

only the behavior of the total density and the mean velocity has been examined. Later works used discrete

velocity models with several speeds and one has been able to solve analytically the problem of the flow

of a discrete gas between two infinite parallel plates with the same temperature and opposite velocities

[4], and numerically the problem of heat transfer between a gas and two infinite parallel plates at rest

and having different temperatures [5]. But the particular boundary conditions adopted in these studies
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do not permit to bring to the fore rarefaction phenomena found using other methods of resolution. By

adopting the boundary conditions of diffuse reflection on infinite plates with arbitrary temperatures and

velocities, it has been possible to highlight the phenomena of increase of internal energy in the flow

as well as the existence of Knudsen layers in the vicinity of the plates inside which velocity slip and

temperature jump occur [3]. Relatively, few studies concern unsteady Couette flow in discrete kinetic

theory. The first work carried out with a four velocity discrete model with the same modulus made it

possible to study the evolution of the total density, the tangential and normal velocities as a function of

time [2].

In the sequel, using a ten velocity discrete model with two different speeds, we study the transition from

unsteady flow to steady state of a gas initially at rest and suddenly set in motion by the displacement of a

plate in contact with it. In section 2 we recall some basic results of discrete kinetic theory and describe

the model C1. The physical problem is set and the numerical method of resolution is presented in section

3 and section 4. Finally in section 5 the results are discussed.

2 Description of the model

A discrete model of gas is a medium composed of particles whose velocities belong to a given discrete

set of vectors. The theory is well know [6, 7] and a p velocity discrete model is a medium whose particles

velocities belong to a given set of p vectors ~ui, i ∈ ∧ = {1, · · · , p} , p ∈ N. The number density of

particles of velocity ~ui at time t′ and point ~x′ , is denoted Ni(t
′, ~x′). Depending on the density of the

medium, binary or high orders collisions occur. For sake of simplicity, only binary collisions are retained

for this study. The Boltzmann equation is replaced by a system of coupled semi-linear partial differential

equations which describe the evolution of the microscopic densities associated with each of the selected

velocities. In absence of external force and when the molecular chaos is initially assumed, the balance

equation for particles with velocity ~ui is

∂Ni

∂t′
+ ~ui · ∇Ni =

1

2

∑

j,k,l

Akl
ij (NkNl −NiNj) , i ∈ ∧ (1)

where the coefficients Akl
ij are the transition probabilities associated with the collision

(~ui, ~uj)←→ (~uk, ~ul).

The determination of the Ni(t
′, ~x′), i ∈ ∧, gives the microscopic description of the discrete model of

gas. The macroscopic variables of a discrete model of gas are associated to the summational invariants of

the model. The summational invariants [8] are quantities conserved through collisions. The summational

invariants attached to the conservation of mass, momentum and energy are called physical invariants.

In contrast to the classical kinetic theory of monoatomic gases, the geometric character of the set of the

given velocities may allow other summational invariants called spurious invariants or cause the physical

invariants to be linearly dependent [3, 9].

The total density N , the macroscopic velocity
−→
U and the total energy E are defined by [9] :

N =
∑

i∈∧

Ni, N
−→
U =

∑

i∈∧

Ni~ui, NE =
1

2

∑

i∈∧

Ni~u
2
i . (2)
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In the tridimensional physical space the kinetic temperature T is defined by

3kBT

2m
+

−→
U 2

2
= E (3)

where kB is the Boltzmann constant and m is the particle mass.

The thermodynamic equilibrium state of the discrete model of gas is called Maxwellian state. For a

discrete velocity model having linearly independent physical invariants, the microscopic densities in a

Maxwellian state associated with the macroscopic variables N ,
−→
U (U, V,W ) and E are [9] :

Ni = exp(λ0 + ~λ · ~ui + λ4~u
2
i ), ∀i ∈ ∧ (4)

where the parameters λ0, ~λ = (λ1, λ2, λ3) and λ4 are uniquely determined by the implicit relations (2).

The discrete model in consideration in this work, the ten velocity model C1, has only linearly in-

dependent physical invariants. The set of its velocities is {~ui = (Ui, Vi,Wi) : i ∈ ∧} [9] where ∧ =

{1, · · · , 10} and ~u1 = c(−1, 1, 1), ~u2 = c(1, 1, 1), ~u3 = c(−1,−1, 1), ~u4 = c(1,−1, 1), ~u9−j = −~uj ,
j ∈ {1, 2, 3, 4}, ~u9 = −~u10 = c(0, 1, 0), c > 0 is a characteristic speed of the phenomenon in

consideration and will be given in the sequel.

(a) Geometry of the flow (b) Velocities of model C1

Figure 1

The model has two different speeds and therefore two kinds of collisions : collisions between particles

having the same speed and collisions between particles of different speeds. Depending on the relative

velocity of the colliding particles the transition probability of the collisions of particules having the

same speed are either A23
14 = cs

√
2 or A27

18 = cs

√
3

2
. The transition probability of the collision between

particles with different speeds is A310
19 = cs

√
6

2
.

The binary collisions of the model C1 are the following :

(~u1, ~u8)←→ (~u2, ~u7)←→ (~u3, ~u6)←→ (~u4, ~u5),

(~u1, ~u4)←→ (~u2, ~u3), (~u1, ~u6)←→ (~u2, ~u5),

(~u1, ~u7)←→ (~u3, ~u5), (~u4, ~u6)←→ (~u2, ~u8),

(~u4, ~u7)←→ (~u3, ~u8), (~u5, ~u8)←→ (~u6, ~u7),

(~u1, ~u10)←→ (~u3, ~u9), (~u2, ~u10)←→ (~u4, ~u9),

(~u5, ~u10)←→ (~u7, ~u9), (~u6, ~u10)←→ (~u8, ~u9).

(5)
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Let u =
U

c
, v =

V

c
, w =

W

c
and e =

E

c2
. The microscopic densities of C1 in the Maxwellian state

associated to the macroscopic variables 1,
−→
U = (U, V,W ) and E are :

N1 =
1

16

n(1 + v)(2e− 2u− 1)(2e+ 2w − 1)

2e− 1
, N6 =

1

16

n(1 + v)(2e+ 2u− 1)(2e− 2w − 1)

2e− 1
,

N2 =
1

16

n(1 + v)(2e+ 2u− 1)(2e+ 2w − 1)

2e− 1
, N7 =

1

16

n(1− v)(2e− 2u− 1)(2e− 2w − 1)

2e− 1
,

N3 =
1

16

n(1− v)(2e− 2u− 1)(2e+ 2w − 1)

2e− 1
, N8 =

1

16

n(1− v)(2e+ 2u− 1)(2e− 2w − 1)

2e− 1
,

N4 =
1

16

n(1− v)(2e+ 2u− 1)(2e+ 2w − 1)

2e− 1
, N9 =

1

4
n(1 + v)(3 − 2e),

N5 =
1

16

n(1 + v)(2e− 2u− 1)(2e− 2w − 1)

2e− 1
, N10 =

1

4
n(1− v)(3 − 2e).

(6)

3 Statement of the problem

We choose the origin O of the orthonormal reference ℜ = (O, ~x′, ~y′, ~z′) of the physical space so that

the plates are located in the planes y′ = −h

2
and y′ =

h

2
, h > 0 (Fig. 1a).

We assume, as is often the case in the treatment of the plane Couette flow in gas dynamics [1, 3, 4, 10]

that the flow is one dimensional and depends only upon the spatial variable y′ (the normal coordinate

in relation to the plate) and the time t′. Due to the symmetry of the model and that of the physical

problem, we assume that N1 = N5, N2 = N6, N3 = N7 and N4 = N8. The independent densities are

reduced to N1, N2, N3, N5, N9 and N10. The system of kinetic equations describing the evolution of

the microscopic densities Ni(t
′, y′), i ∈ {1, 2, 3, 4, 9, 10}, is :















































































∂N1

∂t′
+ c

∂N1

∂y′
= cs

(√
2 +
√
3
)

(N2N3 −N1N4) +
cs
√
6

2
(N3N9 −N1N10)

∂N2

∂t′
+ c

∂N2

∂y′
= cs

(√
2 +
√
3
)

(N1N4 −N2N3) +
cs
√
6

2
(N4N9 −N2N10)

∂N3

∂t′
− c

∂N3

∂y′
= cs

(√
2 +
√
3
)

(N1N4 −N2N3) +
cs
√
6

2
(N1N10 −N3N9)

∂N4

∂t′
− c

∂N4

∂y′
= cs

(√
2 +
√
3
)

(N2N3 −N1N4) +
cs
√
6

2
(N2N10 −N4N9)

∂N9

∂t′
+ c

∂N9

∂y′
= cs

√
6 [(N1 +N2)N10 − (N3 +N4)N9]

∂N10

∂t′
− c

∂N10

∂y′
= cs

√
6 [(N3 +N4)N9 − (N1 +N2)N10]

(7)

Initial and boundary conditions must be prescribed to complete the system (7). The boundary conditions

that we consider on the plates are those of the diffuse reflection which allow both exchange of heat and

momentum. The forces exerted by the gas on a wall with which it comes into contact and their energy

transfers result from the interaction between the gas molecules and those of the wall. When we assume

that the wall is impermeable, that is to say it does not emit or absorb particles, it interacts with the gas

only through collisions. If such a wall has the velocity ~uw and the temperature Tw, we define the discrete

gas in Maxwellian equilibrium with it at the point M and the time t′ as the fictitious gas whose microsco-

pic densities are the strictly positive Maxwellian densities Niw(M, t′) associated with the macroscopic

variables 1, ~uw and Ew [3], the total energy Ew is given by the relation 3kBTw/2m+ ~u2w/2 = Ew.
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The velocity distribution and the geometry of the flow are shown in "Figure 1b". The plates are moving

in the direction of the x′ axis with the velocities ~u±w = (U±
w , 0, 0) and with the temperatures T±

w in the

planes y = ±h

2
. Denoting by N±

iw, i = 1, 2, 3, 4, 9, 10 the microscopic densities of the discrete gas in

Maxwellian equilibrium with the plates and by Λ±(t′) the accommodation coefficients (that is the level

of acquisition of the macroscopic variables of the plates by the discrete gas at the point M(t′,±h/2) at

the time t′), we have the following relations [9, 10] :















Ni

(

t′,−h

2

)

= Λ−(t′)N−
iw, i ∈ {1, 2, 9}

Ni

(

t′,+
h

2

)

= Λ+(t′)N+
iw, i ∈ {3, 4, 10}

(8)

The coefficients Λ−(t′) and Λ+(t′) are determined after the resolution of the initial boundary value pro-

blem. The impermeability of the plates means that the normal velocity at the plates vanishes. Therefore :

−→
U − · ~n− = 0 and

−→
U + · ~n+ = 0 (9)

where ~n− and ~n+ denote the inward-pointing (i.e into the gas) unit vectors normal to the plates and
−→
U −

and
−→
U + the velocities of the discrete gas at M ′

(

t′,−h

2

)

and M ′

(

t′,
h

2

)

. We can write equations (9)

in the form :














2

[

cN1

(

t′,−
h

2

)

+ cN2

(

t′,−
h

2

)

− cN3

(

t′,−
h

2

)

− cN4

(

t′,−
h

2

)]

+ cN9

(

t′,−
h

2

)

− cN10

(

t′,−
h

2

)

= 0

2

[

cN1

(

t′,+
h

2

)

+ cN2

(

t′,+
h

2

)

− cN3

(

t′,+
h

2

)

− cN4

(

t′,+
h

2

)]

+ cN9

(

t′,+
h

2

)

− cN10

(

t′,+
h

2

)

= 0
(10)

We assume in addition that the gas is in Maxwellian equilibrium associated to the macroscopic variables

N0,
−→
U 0 = (U0, V0, 0) and E0 at the start so the initial conditions are :

Ni(0, y
′) = N0

i (y
′), {1, 2, 3, 4, 9, 10}. (11)

The initial and boundary values problem can be stated as the system of the kinetic equations (7) with
the following initial and boundary conditions :























































Ni(0, y
′) = N0

i
(y′), {1, 2, 3, 4, 9, 10}

Ni

(

t′,−
h

2

)

= Λ−(t′)N−

iw
, i ∈ {1, 2, 9}

Ni

(

t′,+
h

2

)

= Λ+(t′)N+

iw
, i ∈ {3, 4, 10}

2

[

cN1

(

t′,−
h

2

)

+ cN2

(

t′,−
h

2

)

− cN3

(

t′,−
h

2

)

− cN4

(

t′,−
h

2

)]

+ cN9

(

t′,−
h

2

)

− cN10

(

t′,−
h

2

)

= 0

2

[

cN1

(

t′,+
h

2

)

+ cN2

(

t′,+
h

2

)

− cN3

(

t′,+
h

2

)

− cN4

(

t′,+
h

2

)]

+ cN9

(

t′,+
h

2

)

− cN10

(

t′,+
h

2

)

= 0

(12)

The Maxwellian densities Ni0 depend on N0, U0, V0 and T0. Similarly the Maxwellian densities Niw

depend on Tw and ~uw. The quantities involved in the physical problem are N0, U0, V0, Tw and ~uw, to

which must be added h. Notice that the constant c is a parameter introduced in conjunction with the

discrete model. We can choose for c the quantity
√

3kBTw/2m, thus c is of the order of magnitude of

the speed of sound in the gas.
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4 Discretization of the problem

The problem (7) - (11) is put in dimensionless form. Taking the quantities h, Nc, tc and c as reference
values we introduce the dimensionless variables and parameters :











































n =
N

Nc

, n0 =
N0

Nc

, nw =
Nw

Nc

, u±

w
=

U±
w

c
, v±

w
=

V ±
w

c
, λ± =

Λ±

Nc

ni =
Ni

Nc

, ui =
Ui

c
, vi =

Vi

c
, n±

iw
=

N±

iw

Nc

, i ∈ {1, 2, 3, 4, 9, 10}

u =
U

c
, v =

V

c
, u0 =

U0

c
, v0 =

V0

c
, y =

y′

h
, t =

t′

tc

Kn = (sNch)
−1, St =

h

ctc
, θ =

3kBT

2mc2
=

T

Tw

, θ0 =
3kBT0

2mc2
=

T0

Tw

, θw =
3kBTw

2mc2
= 1

(13)

We obtain two dimensionless numbers Kn and St which are respectively the Knudsen number and the

Strouhal number. By varying Kn, one passes from continuous gas flows to rarefied gas flows [11].

Clearly t0 =
h

c
is the characteristic time of propagation of perturbations in the gas i.e the time taken by

a perturbation caused by the motion of the moving plate to reach the plate at rest. If we take, as we shall

do, tc to be the characteristic time of unsteadiness, St which is the ratio of the two times controls the

transition of the unsteady flow to the steady state and allows to better observe the transition phase.

The problem to solve in the domain (t, y) ∈ [0,T] ×
[

−1

2
,+

1

2

]

, T > 0, is :



























































































































































St
∂

∂t
(n1) +

∂

∂y
(n1) =

(√
2 +
√
3
)

Kn
(n2n3 − n1n4) +

√
6

2Kn
(n3n9 − n1n10) = Q1(n)

St
∂

∂t
(n2) +

∂

∂y
(n2) =

(√
2 +
√
3
)

Kn
(n1n4 − n2n3) +

√
6

2Kn
(n4n9 − n2n10) = Q2(n)

St
∂

∂t
(n3)−

∂

∂y
(n3) =

(√
2 +
√
3
)

Kn
(n1n4 − n2n3) +

√
6

2Kn
(n1n10 − n3n9) = Q3(n)

St
∂

∂t
(n4)−

∂

∂y
(n4) =

(√
2 +
√
3
)

Kn
(n2n3 − n1n4) +

√
6

2Kn
(n2n10 − n4n9) = Q4(n)

St
∂

∂t
(n9) +

∂

∂y
(n9) =

√
6

Kn
[(n1 + n2)n10 − (n3 + n4)n9] = Q9(n)

St
∂

∂t
(n10)−

∂

∂y
(n10) =

√
6

Kn
[(n3 + n4)n9 − (n1 + n2)n10] = Q10(n)

ni(0, y) = n0
i
(y), i ∈ {1, 2, 3, 4, 9, 10}

ni

(

t,−1

2

)

= n−

iw
λ−(t), i ∈ {1, 2, 9}

ni

(

t,+
1

2

)

= n+

iw
λ+(t), i ∈ {3, 4, 10}

2

[

n1

(

t,−1

2

)

+ n2

(

t,−1

2

)

− n3

(

t,−1

2

)

− n4

(

t,−1

2

)]

+ n9

(

t,−1

2

)

− n10

(

t,−1

2

)

= 0

2

[

n1

(

t,+
1

2

)

+ n2

(

t,+
1

2

)

− n3

(

t,+
1

2

)

− n4

(

t,+
1

2

)]

+ n9

(

t,+
1

2

)

− n10

(

t,+
1

2

)

= 0

(14)

where n = (n1, n2, n3, n4, n9, n10).

The microscopic densities ni(t, y), i ∈ {1, 2, 3, 4, 9, 10}, solutions of the system (14) depend on the

quantities n0, u0, v0, θ0, θw, nw and the two dimensionless parameters St and Kn. The problem (14) is

solved by digital computation using the fractional steps method [12, 13]. The time step is ∆t and the

discretised values of the densities are defined by the following scheme :

n0
i = ni0, i = 1, 2, 3, 4, 9, 10 (15)
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St
n
m+ 1

2

i − nm
i

∆t
= Qi

(

nm+ 1

2

)

, i = 1, 2, 3, 4, 9, 10 (16.1)

St
nm+1
i − n

m+ 1

2

i

∆t
+ vi

∂

∂y

(

nm+1
i

)

= 0, i = 1, 2, 3, 4, 9, 10 (16.2)

(16)































































nm+1
1 n2w − nm+1

2 n1w = 0, y = −1

2

nm+1
1 n9w − nm+1

9 n1w = 0, y = −1

2

2
(

v1n
m+1
1 + v2n

m+1
2 + v3n

m+1
3 + v4n

m+1
4

)

+ v9n
m+1
9 + v10n

m+1
10 = 0, y = −1

2

nm+1
3 n4w − nm+1

4 n3w = 0, y =
1

2

nm+1
3 n10w − nm+1

10 n3w = 0, y =
1

2

2
(

v1n
m+1
1 + v2n

m+1
2 + v3n

m+1
3 + v4n

m+1
4

)

+ v9n
m+1
9 + v10n

m+1
10 = 0, y =

1

2

(17)

where nm
i is the density ni at time t = m∆ (m = 0, 1, 2, · · · ), nm+ 1

2

i the density in middle time and

v1 = v2 = −v3 = −v4 = v9 = −v10 = 1. The quantities nm
i and n

m+ 1

2

i depend only on y.

We make a regular grid of the domain

[

−1

2
,
1

2

]

with the steps ∆y =
1

J− 1
where J ∈ N−{0, 1}. Let

nm+1
i,j be the value of nm+1

i at the point y ∈
[

−1

2
,
1

2

]

. We use a finite-difference method to integrate

the system (16.2) :

nm+1
i,j+1 − ain

m+1
i,j = bi

(

n
m+ 1

2

i,j + n
m+ 1

2

i,j+1

)

, i = 1, 2, 3, 4, 9, 10 (18)

with

ai =
1− St∆y

2vi∆t

1 + St∆y
2vi∆t

and bi =

St∆y
2vi∆t

1 + St∆y
2vi∆t

. (19)

For the computation, we take J = 21 and the time step is ∆t = 0, 01 (T = 1000). The conver-

gence criterion used in the computation is based on the relative error of the macroscopic variables :

max

∣

∣

∣

∣

φm+1 − φm

φm

∣

∣

∣

∣

6 10−6, where φ = u, θ.

5 Numerical results

In the numerical resolution, we set n0 = nw = 1, where n0 is the total density of the gas at the initial

time and nw = 1 is the total density of the discrete gas in the Maxwellian equilibrium with the plate.

We take the number of Strouhal St = 2, 5. We assume in the sequel that the two plates have the same

dimensionless temperature θ−w = θ+w = 1.

5.1 The plates are at rest

When the plates are at rest and the gas is initially at rest with a temperature different from that of the

plates, there is just a heat transfer process : the total density is constant and the macroscopic velocity
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remains zero throughout the gas flow. Only the temperature of the gas varies so as to establish the ther-

mal equilibrium with the plates as indicated in the figures below : when the gas is initially at a lower

temperature than that of the plates ("Figure 2a" and "Figure 2b"), and when the initial temperature of the

gas is higher than that of the plates ("Figure 3a" and "Figure 3b") for Kn = 0, 0001 and Kn = 0, 1. In

all cases the kinetic temperature of the discrete gas in the flow is symmetrical with respect to the y = 0

axis, and when the flow becomes permanent there is no temperature jump on the plates.
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Figure 2 – Kinetic temperature when the plates are immobile (θ0 < θ±w )
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Figure 3 – Kinetic temperature when the plates are immobile (θ0 < θ±w )
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5.2 One of the plate is moving

We study here the case where the gas is initially at rest with a temperature lower than that of the plates.

The initial values of the macroscopic variables of the gas are u0 = 0, v0 = 0 and θ0 = 0, 6.

The macroscopic variables on the plates are : in y = −1

2
, u−w = 0, v−w = 0, θ−w = 1 and in y =

1

2
,

u+w = 0, 3, v+w = 0, θ+w = 1.

5.2.1 Longitudinal velocity

The motion of the plate induces fluctuations of the longitudinal velocity at the beginning of the transition

phase. The intensity of these fluctuations decreases from the vicinity of the moving plate towards the

fixed plate ("Figure 4a" and Figure 4b"). In the transition phase, the longitudinal velocity increases as

one approaches the moving plate. The longitudinal velocity which is initially zero gradually increases

to a constant value reached at the steady state. This value depends on the degree of rarefaction of the gas

(Fig. 5). In the continuous flow regime, the non-slip condition holds : the longitudinal velocity of the

gas in the vicinity of each plate equals the velocity of the plate ("Figure 4a", t = 1000). In the transition

regime, there is velocity slip at the wall : in the vicinity of the fixed plate the velocity of the gas is strictly

greater than zero and in the vicinity of the moving plate this velocity is strictly lower than the velocity of

this plate ("Figure 4b", t = 1000). The longitudinal velocity of the gas at y = 0 is equal to the average

of the plate velocities and its profile is linear, when the flow becomes permanent, whatever the flow

regime (Fig. 5). The results obtained with the C1 model show the dependence of the velocity slip upon

the Knudsen number Kn in the steady state. At the moving plate, the velocity slip decreases and tends

to 0 with Kn. However, its variation rate is not uniform. The variation is fast for small values of Kn and

low for large values of Kn (Fig. 6). The velocity slip tends to the half of the difference of the velocities of

the plates when Kn tends to infinity. This confirms the results obtained with the Broadwell four velocity

model [14].
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Figure 4 – Longitudinal velocity as a function of y
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Figure 5 – Longitudinal velocity at steady state as a function of y
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Figure 6 – Velocity slip at steady state as a function of Kn

5.2.2 Kinetic temperature

The temperature of the plates is higher than that of the gas at the initial time. There is therefore a war-

ming of the gas by the plates. At the beginning of the transition phase, we observe the fluctuations of the

kinetic temperature due to the energy used to ensure the movement of the gas (Fig. 7). These fluctuations

disappear over time in the transition phase.

At the steady state the profile of the kinetic temperature of the discrete gas depends on the degree of

rarefaction of the gas (Fig. 8). Hence the profile is parabolic in the transitional and slipping regimes, and

linear in the rarefied and highly rarefied regimes. These profiles of the kinetic temperature are symme-

trical with respect to the y = 0 axis.

The temperature jump depends on Kn and on the velocity of the moving plate (Fig. 9). It decreases and

tends to 0 with Kn but with a non-uniform variation rate. The variation is fast for small values of Kn and

low for large values of Kn. When Kn tends towards +∞ temperature jump tends towards a constant.
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Figure 7 – Kinetic temperature as a function of y
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Figure 8 – Kinetic temperature at steady state as a function of y
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Figure 9 – Temperature jump at teady state as a function of Kn

5.3 Effect of the Strouhal number St

We analyse the influence of the Strouhal number St on the longitudinal velocity and the kinetic tempe-

rature in the case of a continuous flow (Kn = 0, 0001). The macroscopic variables of moving and fixed

plate are respectively u+w = 0, 3, v+w = 0 and u−w = 0, v−w = 0 ; the discrete gas initially having a kinetic

temperature (θ0 = 0, 6) lower than that of the plates (θ−w = θ+w = 1).

We take t0 > tc so St > 1. When t0 = tc i.e St = 1 the steady state is attained faster than for t0 > tc

that is St > 1. Thus to better observe the transition phase one can increases the Strouhal number St.

At the beginning of the transition phase amplitudes of fluctuations increase with St ("Figure 10a" and

"Figure 12a"). In the transition phase, longitudinal velocity and kinetic temperature increase rapidly as

St decreases ("Figure 10b" - "Figure 11a and "Figure 12b" - "Figure 13a). The steady state is reached

faster when St decreases. For example, with the kinetic temperature at t = 2000, we are already in the

permanent state for St = 1, St = 2, 5 and St = 5 (Fig. 13b), but not yet for and St = 10 for which the

steady state is reached after t = 2000. It’s the same for the longitudinal velocity (Fig. 11b).
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Figure 10 – Longitudinal velocity as a function of y (Kn = 0, 0001)
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Figure 11 – Longitudinal velocity as a function of y (Kn = 0, 0001)
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Figure 12 – Kinetic temperature as a function of y (Kn = 0, 0001)
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Figure 13 – Kinetic temperature as a function of y (Kn = 0, 0001)

6 Conclusion

We have solved numerically using the fractional step method the problem of the unsteady flow of a

discrete gas between two parallel infinite moving plates with the same temperature. Since the transverse

velocity of the plates is zero, the transverse velocity of the flow after a few small fluctuations at the

beginning of the transition phase vanishes in all the flow regimes. The results reported here are related

to the cases where the initial temperature of the discrete gas in the flow is lower than the temperature of

the plates and the plates are both at rest or one moving and the other at rest.

When the plates are at rest we have a pure heat tranfer between the discrete gas and the plates. In the

transition phase the temperature of the flow is always lower than that of the plates and has a parabolic

profile with a minimum in y = 0. At th steady state, there is no velocity slip or temperature jump

whatever the flow regime, and the temperature of the flow is constant and equal to temperature of the

plates.

When one of the plate is moving the longitudinal velocity has a non monotonous parabolic profile at the

transition phase. In the steady state the profile is linear. However velocity slip exists and depends on Kn

and the velocities of the plates. It tends to zero when Kn tends to zero. The kinetic temperature of the

discrete gas, after fluctuations at the beginning of the transition phase, changes from a non monotonous

parabolic profile with a minimum in the flow to a non monotonous profile with maxima in the flow higher

than the temperature of the plates. This profile is kept in the steady state. The temperature jump depends

on Kn and the velocity of the moving plate and is an increasing function of the velocity of the moving

plate for fixed Kn. Despite their simplicity discrete velocity models reflect the complex dynamics of gas

flows.
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