
24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Numerical analysis of shrinkage induced
micro-cracking of concrete based on Peridynamic

theory

Yudan. JIN1,a, Meng. WANG1,b, Yun. JIA1,c,*, Jianfu, SHAO1,d

1. Univ. Lille, CNRS, Centrale Lille, FRE 2016-LaMcube-Laboratoire de Mécanique de Lille,
multiphysique, multiéchelle, F-59000 Lille, France

a. yudan.jin.etu@univ-lille.fr
b. meng.wang.etu@univ-lille.fr

c,*. yun.jia@univ-lille.fr
d. jian-fu.shao@polytech-lille.fr

Résumé :
Le présent travail consiste à présenter une étude numérique de la micro-fissuration induite par le retrait
dans les strcutures en béton. La méthode numérique utilisée est basée sur la péridynamique (PD). Dans
un premier temps, un modèle numérique composé une matrice cimentaire endommageable et les granu-
lats élastiques est construit. Les granulats sont distribués régulièrement dans la matrice. Une série des
études paramétriques ont été réalisée afin d’étudier l’influence du taille et de la fraction volumetrique
des garnulats. Les largeur des fissures obteuns dans les différents cas sont comparées. En se basant sur
les résultats obtenus, un modèle numérique avec une distribution aléatoire des granulats est ensuite pro-
posé. Enfin, les résultats numériques sont comparés avec les observations expérimentales et une bonne
concordance est obtenue.

Abstract :

This work presents a numerical investigation of shrinkage induced micro-cracking of concrete by using
the peridynamics theory. A numerical concrete model, with a regular aggregate arrangements, is firstly
established. In order to study the influence of the aggregate diameter as well as its volume fraction, a
series of parametric studied has been performed. The obtained value of crack width have been compared.
Based on the previous results, a new numerical model with random aggregate arrangements is proposed
for studied material. Finally, the numerical prediction is compared with the experimental investigation.
The results show that a good agreement is obtained between the numerical results and experimental
observations.

Mots clefs : Peridynamics/ Shrinkage/ Micro-cracking/ Concrete/ Numerical
analysis
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Nomenclature
ρ mass density of material point
f pairwise force between two material points connected by a bond
x, x′ location vector of material point
ü acceleration vector of material point
t time step
Hx horizon of material point x
V ′ volume of material point x′

b body force density
δ horizon size
B body of model
s stretch of a bond
ξ relative position vector of two material points
η relative displacement vector of two material points
ω micro-potential
c micro-modulus function denoting the stiffness of a pairwise bond
g kernel function describes the spatial distribution of intensity of long-range forces in materials
E Young’s modulus of the solid
h thickness of structure model
µ scalar function describes the state of the bond
s0 critical stretch for bonds
G0 macroscopic fracture energy
ψ local damage of material point x
n time step instant
Vj volume of material point j involved in the horizon of point i
4x element size of the model
Gij surface correction factor between point i and j
Cvj volume correction factor for point j related to point i
M fictitious diagonal density coefficient matrix for time integration
dnc damping coefficient
F pairwise force between two material points connected by a bond for time integration
4t time step size
Kn diagonal "local" stiffness matrix
λii entries on the main diagonal of M
C the maximum value of c
L the length of the specimen
φ diameter of the aggregates
ρ volume fraction of the model
Gft macroscopic fracture energy of tension
Gfc macroscopic fracture energy of compression
ν Poisson’s ratio of solids
li length of the element of the model
Hi length of a bond initial of two points connected directly
ε shrinkage strain
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Introduction
Concrete is widely used in engineering structures. During the lifetime of structures, it is submitted to va-
rious coupled conditions such as mechanical loading, desaturation and re-saturation, temperature varia-
tion and chemical degradation. In order to guarantee the durability of structures, it is necessary to identify
the mechanical behavior of concrete under multi-field stress conditions.The drying process leads to de-
siccation shrinkage of cement paste. This drying shrinkage due tomoisture gradients between the surface
and core of the structure is prevented by a structural effect, which can induce surface micro-cracking.
Moreover, it can be restrained by the aggregates due to the stiffness difference between aggregates and
cement paste, which leads to radial and bond micro-cracking. Cement-based materials thus can be da-
maged without any direct mechanical loading, such as loss of concrete stiffness and strength, increase of
permeability, etc. The present study is focused on the evolution of shrinkage cracking in cement-based
materials. However, in a normal concrete, due to the great variability of aggregate (shape, size distribu-
tion and porosity, etc.) and the eventual reaction between the cement matrix and the inclusions, it is very
difficult to analyze the mechanisms controlling the creation and development of cracks. Simulation of
the failure in solid materials is one of the major concerns in engineering science and solid mechanics.
Due to the demand of simulating crack initiation and propagation process in solid materials,different me-
thods have been developed. In the framework of continuum mechanics, several methods (for instance :
the finite element method (FEM) [1], the finite difference method (FDM) [2]) have been proposed. Ho-
wever, they exhibit high mesh dependence. In view of this, the meshless methods are introduced. But
their high-order continuous approximation functions used cannot provide a good prediction of crack
propagation. Therefore, the extended finite element method (XFEM) [3] and the discrete finite element
method (DFEM) [4],are proposed. In these two methods,additional functions are introduced to describe
the discontinuous mechanical problems. They are still incapable of analyzing the complex propagation
of cracks and fissures in three-dimensional group.
On the other hand, the peridynamics method (PD) [5] can provide a good description of development
and propagation of cracks/fissures. Because in PD theory, the studied structure is divided into a series
of material points, which satisfy all the physical law. In other words, it’s a non-local theory of solid me-
chanics, based on integral equilibrium equations. Therefore,the basic equilibrium equation of a material
point is verified by using the integral of internal forces exerted on non-adjacent points over a finite dis-
tance. This non-local model is mathematically compatible with the initiation and propagation of cracks,
since integral equations could naturally handle discontinuities. In addition,the peridynamics can solve
both the static and dynamic problems.
In this work, a numerical study of shrinkage micro-cracking in concrete has been presented by using
the peridynamics theory. In view of this, the numerical model of studied concrete, with a regular ag-
gregate arrangements, is firstly formulated. In order to study the influence of the aggregate diameter
and its volume fraction, a series of parametric studies have been performed. The average crack width
in different cases are compared. Based on obtained numerical results, a second numerical model with
random aggregate arrangements is proposed. Finally, the numerical prediction will be compared with
the experimental investigation.

The peridynamics formulation for micro-elastic materials
The non-local continuum theory peridynamics is firstly introduced by Silling in [5]. And it is introdu-
ced to describe the mechanical behaviors in continuum media by using an integral of forces instead of
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divergence of stress. Each pair of particles interacts via a vector function f, basing the position x and
the displacement u to the reference point, called a pairwise force function, as shown in Figure 1. The
peridynamics (PD) equation of motion at a material point x and the time t according to the Newton’s
law is given as[6] :

ρ(x)ü(x, t) =
∫
Hx

f(x, x′,u(x, t),u(x′, t), t)dV ′ + b(x, t) (1)

where ρ is the mass density of material particle, u is the displacement vector field, b is the prescribed
loading force density field which represents the external force per unit reference volume, Hx is the
neighborhood of material particle x within his horizon size δ, which is usually taken to be a sphere in
3D or a circle in 2D problems centered of x, and given as :

Hx = H(x, δ) =
{
x’ ∈ B :

∥∥x′ − x
∥∥ ≤ δ} (2)

Fig. 1: interactions between the points material

f can be simplified as f(η, ξ), with relative position of two particles in the reference configuration ξ :

ξ = x′ − x, and their relative displacement η : η = u′ − u. And f(η, ξ) = 0 when ‖ξ‖ > δ.
And the normal deformation (stretch) s of a bond can be defined as

s =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
(3)

For the micro-elastic material[5][6], the pairwise force function f is derivable from a scalar micro-
potential ω(η, ξ) = c(ξ,δ)s2ξ

2 , then f can be expressed as

f(η, ξ) =

{
∂ω(η,ξ)
∂η = η+ξ

‖η+ξ‖sc(ξ, δ) when ‖ ξ ‖≤ δ
0 else

(4)

where c(ξ, δ) = c(0, δ)g(ξ, δ) is the micro-modulus function denoting the stiffness of a pairwise bond,
and the kernel function g(ξ, δ) describes the spatial distribution of intensity of long-range forces in
materials. According to Huang et al.[7][8], the micro-modulus c should gradually get weaker with the
length of bond ξ = ‖ξ‖ increases, and it vanishes when their length of bond reaches the horizon δ. So,
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the micro-modulus in 2D problems can be given by :

c(ξ, δ) =

 315E
8πhδ3

[
1− (‖ξ‖δ )2

]2
when ‖ ξ ‖≤ δ

0 else
(5)

where h is the thickness of structure model and E is the Young’s model of the solid, and the effective
Poisson’s ratio is limited to 1/3 here for the plane stress situation[9]. Damage can be incorporated into the
PD constitutive model by allowing the bonds for solid interactions to break irreversibly. And taking the
bond-broken into the consideration, the force can be modified through a history-dependent scalar-valued
function µ(ξ, x, t),

µ(ξ, x, t) =
{

1, whens ≤ s0
0, whens > s0

(6)

where s0 is the critical stretch for bonds. It is related to the macroscopic fracture energy G0 which is
experimental measurable. By following the same procedure performed in [6][10][11] for the plane stress
bond-based PD analysis, G0 is :

G0 = 2h

∫ δ

0

{∫ δ

z

∫ cos−1 Z/ξ

0

cs20ξ
2

2
dφdξdz

}
(7)

By combining the Eq.5 and Eq.7, G0 finally writes as :

G0 ≈
8Eδs20
5π

(8)

So the critical stretch of bonds s0 is

s0 =

√
5πG0

8Eδ
(9)

Then the pairwise force function can be modified as

f(η, ξ) =

{
∂ω(η,ξ)
∂η = η+ξ

‖η+ξ‖sc(ξ, δ)µ(ξ, x, t) when ‖ ξ ‖≤ δ and s < s0

0 else
(10)

According to this criterion for damage, Silling[6][13] and Kilic[12][14] give the local damage at the x
point in the material as

ψ(x, t) = 1−
∫
Hx
µ(x, ξ, t)dV ′x∫
Hx
dV ′x

(11)

where V ′x is the volume of the x′ point.

Numerical implementation

Spatial discretization and correction
The region is discretized into nodes (material particles), each with a known volume in the reference
configuration. And in this study, the sample is discretized into particles with the uniform grid spacing
configuration. The horizon is chosen as δ = 3.0154x, which is slightly greater than 34x commonly
used in PD model[6] for the case of coarsest grid studied, and the4x is the element size of the model.
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Then the spatial integration in PD is converted into a summation of finite number of material lattices,

ρüni =

NHxi∑
j=1

Gijf(unj − uni , xj − xi)CvjVj + bni (12)

where n is the time step number, and subscripts denote the node number, so that üni = u(xi, tn). Vj is
the volume of point j involved in the horizon of point i, in 2D problems, Vj = 4x2 ∗ h.
Gij is the surface correction factor, it is introduced for the material points closed to free surfaces or
material interfaces, as shown in Figure 2. It is related to the relative position of particle i and j and ratio
of the deformation energy density of the material in classical continuum mechanical method and PD
method [10][15].

Fig. 2: Surface effect of the points near the boundary and interfaces

Cvj is the volume correction factor. As illustrated in Figure 3, the material points near the boundary is
partly belong to the horizon. So it is necessary to correct the volume fraction for the points in summation,
the volume correction factor is expressed as

Cvj =


0 when ‖ ξ + η ‖≥ δ
1 when ‖ ξ + η ‖≤ (δ − r)

( δ+r−‖ξ+η‖
2r ) when (δ − r) ≤‖ ξ + η ‖≤ δ

(13)

where r = 4x
2 .

Fig. 3: Volume correction for the collocation points inside the horizon
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Time integration
For this study, an adaptive dynamic relaxationmethod is used, which is introduced byKilic andMadenci[16].
According to the ADRmethod, the PD equation ofmotion is written as a set of ordinary differential equa-
tions for all material points in the system by introducing a damping coefficient dnc [17] and a fictitious
diagonal density coefficient matrix M.

MÜn
(X, t) + dncMU̇n

(X, t) = Fn(U,U′,X,X′) (14)

By utilizing central-difference explicit integration, displacements and velocities for the next time step
can be obtained as

U̇n+1/2
=

(2− dnc4t)U̇
n−1/2

+ 24tM−1Fn

2 + dnc4t
(15)

and
Un+1 = Un +4tU̇n+1/2 (16)

By assuming that U0 6= 0 and U̇−1/2 = 0, the integration started by

U̇1/2
=
4tM−1F0

2
(17)

where4t is the time step, it do not have to be physical quantities, in dynamic relaxation, a time step size
of 1 (4t = 1) is a common choice. According to Madenci and Oterkus[10], the damping coefficient dnc
in 2D context can be expressed as

dnc = 2

√
(Un)TKnUn

(Un)TUn (18)

where Kn is the diagonal "local" stiffness matrix, which is given as

Kn
ii =

Fni − F
n−1
i

λii4tu̇t−1/2i

(19)

with the entries on the main diagonal of M,

λii =
πδ2hC4t2

44x
(20)

where C takes the maximum value of Eq.5.

Numerical analysis of shrinkage induced micro-cracking
Shrinkage induced micro-cracking was analyzed by means of the PD approach described above. The
elements representing the cement paste were subjected to an incrementally applied uniform shrinkage
strain of bonds up to ε = 0.5%. This value was chosen for the simulation to represent a relatively severe
shrinkage of neat cement paste on first-drying shrinkage. The influence of aggregate volume fraction
and aggregate diameter was studied. Aggregate volume fractions ρ = 0.5, 0.3 and 0.1 were modeled.
Furthermore, four different aggregate diameters φ = 16, 8, 4 and 2mm were used. The geometry of the
specimen analyzed for all volume fractions and aggregate sizes is shown in Figure 4, and the same detail
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of discreitization was applied with4x = 0.25mm. The length L of the specimen is

L =

√
πφ2

ρ
(21)

The material parameters for the constitutive model were chosen according to Table 1. For an aggregate

Fig. 4: Numerical model

Material E[GPa] Gft [J/m
2] Gfc [J/m

2] ν

Cement Paste 40 100 100, 000 1/3

Aggregate 100 - - 1/3

Table 1: Material parameters for the constitutive model

diameter φ = 16mm and the volume fraction ρ = 0.3, the damage pattern is shown in Figure 5. Gene-
rally, some bond cracks between the aggregate and paste can be observed, however most cracks appear
to originate at the aggregate surface and propagate towards the matrix. When the cement was subjected
to drying shrinkage, the cracks were seen to occur near the shortest distance between aggregates and
connect them soon in a regular square pattern, which is similar with the pattern in the research of Grassl
et al. [18].

Fig. 5: Crack evaluation for ρ = 0.3 and φ = 16mm
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Width of micro-cracks for different volume fractions and aggregate diameters were compared. Inspired
by Grassl et al.[18], The average crack width is

wc =

∑nc
i=1 liHisi∑nc
i=1 li

(22)

where li is the length of element, so that li = 4x for these model with a uniform discretization, nc is
the number of cracked elements. Recall that s is the stretch of a bond, and H is the length of a bond
initial of two elements connected directly, so that H = 4x.
The influence of the aggregate diameter and volume fraction on the average crack width is shown in
Figure 6. The average crack width decreases with decreasing aggregate size at constant volume fraction.
An increase of volume fraction at constant aggregate size results in a decrease of crack width.
Figure 7 shows the crack pattern for ρ = 0.3 for φ = 8mm at a shrinkage strain in the matrix of

Fig. 6: Average crack width wc

ε = 0.5% at a random arrange of aggregate. The partial bond cracks appearing around some aggregate
particles and thematrix cracks that propagate through the paste and very often bridging several aggregate
particles. And it is similar to the crack pattern in the research experimental of Rougelot [19], as illustrate
in Figure 8. It can be seen that the numerical simulation results of the entire process of failure are
consistent with the experimental results. Numerical simulations of this classical example do not require
any external failure criteria, and it shows that the PDmethod has a great advantage in simulating fracture.

Conclusion
In the present work, the influence of size and volume fraction of aggregate on shrinkage induced micro-
cracking was studied numerically by using the PD method. The obtained results show that the average
crack width increases with the aggregate diameter and decreases with the volume fraction of aggregate.
And the creation and propagation of fissures are satisfactorily by the numerical simulations.
Although a good agreement is generally obtained between the numerical simulations and the experimen-
tal observations,the representation of aggregates approximation and size selection are oversimplified in
the present study. Therefore, the future work will improve the modeling method to make it more realistic
models and extend the modeling approach to 3D.
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(a) (b)

Fig. 7: Crack patterns for (a) ρ = 4mm and (b) ρ = 8mm at a shrinkage strain in the matrix of ε = 0.5%

Fig. 8: Micro-tomographic slice of a composite C2 after 48 hours of drying[19]
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