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Résumé :  
 
Pour augmenter les possibilités du logiciel Abaqus, nous proposons une stratégie permettant d’activer 
les degrés de liberté cachés du logiciel, et d’inclure des phénomènes couplés supplémentaires. À titre 
d’illustration, nous appliquons cette approche à la simulation d’un processus de diffusion-réaction, le 
modèle de Gray-Scott, qui génère des structures spatio-temporelles complexes. Plusieurs 
configurations ont été calculés et comparées aux résultats de la littérature afin d’analyser le potentiel 
de notre stratégie et d'Abaqus à permettre la prise en compte de phénomènes complexes dans Abaqus. 

 
Abstract :  
 
To increase the Abaqus software capabilities, we propose a strategy to force the software to activate 
hidden degrees of freedom and to include extra coupled phenomena. As an illustration, we apply this 
approach to the simulation of a reaction diffusion process, the Gray-Scott model, which exhibits very 
complex patterns. Several setups have been considered and compared with available results to analyze 
the abilities of our strategy and to allow the inclusion of complex phenomena in Abaqus. 
 
Mots clefs : reaction-diffusion, finite elements, user subroutines, Gray-Scott 
model 
 
1 Introduction  
 
Simulating the effect of impurities on the integrity of structures leads to account for several 
interactions between, e.g., the mechanical fields, the impurities transport and trapping, the thermal 
fields, etc. The simulation of all these phenomena simultaneously is a complex task, especially when 
strong couplings are involved or investigated: in the hydrogen embrittlement of metals [1], or in the 
hydrolysis of polymers [2,3], for instance, mobile species are adsorbed, transported through the 
material, and trapped on specific sites whose density is time and space dependent [4,5] (e.g,, through 
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the development of plasticity for hydrogen in metals [6]). Furthermore, mechanical fields can be 
affected by these species because of induced deformations or through modifications of mechanical 
properties [7,8].  
Numerous studies account for such interactions in finite element codes, in various application fields 
(metal/hydrogen, water/polymer, metal/lithium ions, see [9-17] among others), but very few 
developments include several phenomena in the computations [18,19], especially in the commercial 
finite element codes, due to their inherent limitations in terms of available degrees of freedoms at each 
node. Such an inclusion may, however, be of importance, e.g., to model the behavior of structures in 
the presence of both impurities and evolving thermal boundary conditions [20]. The aim of this work 
is thus to introduce some developments performed in Abaqus to solve coupled mechanical-
multidiffusion finite element problems. This paper is limited to a reaction-diffusion process between 
two species, which is solved by using a coupled mechanical-diffusion scheme (‘coupled temp-
displacement’ in Abaqus) that allows further developments to account for the mechanical fields as 
well. First, the multidiffusion implementation strategy is presented, and then an application to the 
Gray-Scott reaction-diffusion model is presented to illustrate the new capabilities [21,22]. 

 
2 Introduction of a multidiffusion process in Abaqus 
 
In order to solve a complex problem with mechanics and multidiffusive fields in a finite element (FE) 
software, it is mandatory (i) to have a finite element formulation that includes as many degrees of 
freedom (DOFs) per node as the number of unknown fields, and (ii) to introduce the correct weak 
formulation for all of these DOFs for solving the problem. Introducing extra DOFs is complex; one 
may exploit the unused mechanical DOFs (rotations, numbered from 3 to 6, or the third displacement 
component in 2D problems), or add extra features to the elements (see [23,24] for phase field 
implementation in Abaqus) through a user element (UEL) routine [25]. One approach of particular 
interest has been proposed by Chester [26] to solve coupled thermo-chemo-mechanical problems in 
polymers (this work has been applied in [27] for a simple adsorption process). In this work, a UEL has 
been developed that activated an extra DOF (not numbered between 1 and 6, for displacements and 
rotations, nor NT11), in addition to the introduction of a relevant weak formulation as specified in 
[25]. Such DOFs are included by default in the Abaqus element library for ‘coupled temp-
displacement’ procedures, but they are hidden and cannot be accessed through the CAE interface or 
input files1. These DOFs, numbered from 12 to 30, correspond to NT (for ‘Nodal Temperature’) 
variables. Once activated by the UEL routine, their boundary conditions can be imposed in the input 
file and their values (NT, HFL, etc.) can be required in the output database file. 
It is worth noting that all the studies mentioned above, where an UEL was used to redefine the 
problem, have also superimposed additional layers of elements taken from the Abaqus library in order 
to visualize the results. As demonstrated in [29], it is possible to go further and extend the Abaqus 
finite element formulation by superimposing a user element to an Abaqus element: the terms that are 
not included by default in the formulation are introduced through the UEL routine and the Abaqus 
material library. The approach chosen in the present study combines the advantages of keeping the 
features of the Abaqus libraries (materials, elements, etc.) and of adding extra terms and DOFs in the 
finite element formulation by using a superimposed UEL. Thus, the implementation work is optimized 
because the mechanical behavior needs not being redefined. Even if a multidiffusion process only is 
considered here, the ultimate goal of a fully coupled mechanical-multidiffusion problem has been kept 
in mind during the developments. 
 

3 Implementation process 
 
Our strategy is presented in Figure 1: several element layers sharing the same nodes are defined, and a 
‘coupled temp-displacement’ procedure is used. In this example, the three UEL layers have the same 
                                                             
1 Their presence can be inferred from [28], sections 28.3.6 and 28.6.5, in the ‘Output’ subsection. 
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numbers of DOFs and, assuming that DOFs 11, 12, and 13 represent diffusion DOFs between which a 
reaction may occur, all user elements layers share the same UEL routine with different parameters. 
Each layer, in this example, has a specific role: 

(i) Layer 1: the Abaqus element (with mechanical DOFs 1 to 3, and 11) involves the mechanical 
behavior, one diffusion phenomenon (related to DOF 11), and its effects on the mechanical 
behavior. The problem is strongly coupled (i.e., the diffusion and the mechanical problems are 
solved simultaneously), but no effect of mechanics on diffusion is possible here (except with 
developments beyond the scope of this work). 

(ii) Layer 2: this UEL layer activates DOF 12 through its related weak formulation (here, 
diffusion, but it could be any other physical or chemical process), and the coupling between 
mechanics and DOF 11 (for no complete strong thermo-mechanical coupling is included by 
default in Abaqus). 

(iii) Layer 3 has the same role as layer 2, but for DOF 13. 
(iv) Layer 4 defines only the relation between DOFs 12 and 13. 

 
Figure 1. Principle of the implementation of a multidiffusion process. 

It is worth noting that other approaches can be considered in the superimposition process (for instance, 
a single UEL can be used to activate DOFs 12 and 13, and to introduce all the ingredients needed in 
Abaqus). Each element layer leads to the computation of a specific stiffness matrix, performed either 
by Abaqus or by the UEL, as shown below: 

 

 

(1) 
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In the case presented in Figure 1, the stiffness matrices are 16×16 and 20×20 for the Abaqus element 
and for the UEL, respectively. At the end of the superimposition process, the stiffness matrix of the 
global problem is 24×24: due to the activation of the extra nodes, the initial Abaqus element stiffness 
matrix has increased significantly, without any other user manipulation than the activation of hidden 
DOFs. 
This strategy is applied below, where only DOFs 12 and 13 are considered, for illustration. The 
transient ‘coupled temp-displacement’ procedure is used, even if there is no coupling between DOFs 
(12,13) and (1,2,3,11) in the present work. 

 
4 Application 
 
The Gray-Scott model is considered here as a test reaction-diffusion process to be implemented. 
 

4.1 The Gray-Scott model 
 
The Gray-Scott (GS) reaction-diffusion model represents a particular case of Turing systems [30], 
where the reactions of three chemical species are focused on. These species, 𝑈, 𝑉, and 𝑃, define an 
autocatalytic system so that [21,22] 
 

 𝑈 + 2𝑉 → 3𝑉
𝑉 → 𝑃   (2) 

 
The space-time evolution of species 𝑈 and 𝑉 can be obtained by solving the following system of 
differential equations:  
 

 
𝜕𝑢
𝜕𝑡 = 𝐷!∆𝑢 − 𝑢𝑣! + 𝐹 1 − 𝑢

𝜕𝑣
𝜕𝑡

= 𝐷!∆𝑣 + 𝑢𝑣! − 𝐹 + 𝑘 𝑣
 (3) 

 
where 𝑢 and 𝑣 denote the concentrations of species 𝑈 and 𝑉, respectively, 𝐷! and 𝐷! represent their 
diffusion coefficients, 𝐹 is the feed rate for 𝑈 and 𝑘 the kill rate for 𝑉. This reaction has been widely 
studied as a simple model to reproduce the patterns observed in several chemical reactions (not to 
speak of natural patterns [31]), as illustrated in Figure 2. 
 

CIMA (chlorite-iodide-
malonic acid) reaction in 
various experimental 
conditions [32]. 

 

FIS (ferrocyanide-iodate-
sulfite) reaction in various 
experimental conditions 
[33]. 

 

patterns which we strictly associate with non oscillatory states
of the CSTR, and the nonstationary states including traveling
waves and various oscillatory states which may or may not be
associated with oscillations in the CSTR.
Considering the extreme simplicity of the LE model compared

to the actual chemical kinetics, there is a striking agreement
between computational and experimental results, at least when
[ClO2]0 is not too low and [PVA]0 not too high. In both cases,
the Turing domain bracketed between a high [SI3-] uniform
steady state and an oscillatory state respectively at low and high
[MA]0 shifts to higher [MA]0 as [ClO2]0 is increased. The
computed Turing bifurcation line agrees almost quantitatively
with the experimental line. The general features of the experi-
mental and numerical Hopf lines also agree well, though the
numerical limits are nearly systematically shifted forward with
respect to the corresponding experimental lines.
There is also a very good agreement between computed and

experimentally observed pattern planform distributions. In
particular, the classical sequence of patterns when the distance
to onset increases is well reproduced in both cases (Figure 10).
If one starts from low [MA]0 and increases this parameter, a
transition occurs from the uniform dark state (high [SI3-]) to a
stationary triangular array of clear spots, the Hπ hexagon pattern
of the model. When [MA]0 is further increased, the spot patterns
turns into a stationary stripe patterns. Although in experiments
the domain of stripe patterns is less widespread than in the
model, the general trends are followed. In both cases, the extent
of the domain of stripes increases with [ClO2]0. The model even
predicts that, at point Th in Figure 3, reached for [ClO2]0 ) 2.5
× 10-3 M, the Hπ domain vanishes at onset and that, for larger
values of [ClO2]0, a H0 state should develop. The latter is not

observed experimentally, but at such high values of [ClO2]0,
the pattern amplitude becomes so small that any pattern would
be difficult to detect experimentally. This problem is actually
encountered when [ClO2]0 > 1.4 × 10-3 M; for these values,
no patterned states were detected, even for large PVA concen-
trations.
There seems to be some discrepancy between the model

calculations and the experiments at high [PVA]0 and low [ClO2]0
below the oscillatory domain. In the experiments, when [MA]0
increases, the Turing state is followed by a new uniform steady
state, characterized by a lower value of complex [SI3-] (clear
color). No similar computed bound appears in Figure 9. As a
matter of fact, when [MA]0 increases, the computed stationary
pattern becomes unstable and is replaced by an oscillatory state.
Since the volume of the gel is small and in contact with the
large volume of the CSTR which remains stationary, we suspect
that, in the experiment, the gel does not oscillate because it is
forced into a uniform steady state. This interpretation goes
beyond our present 2-D approximation so that the computed
limits are not really significant and have not been reported on
the diagrams. More general considerations on the role of the
coupling between the gel and the CSTR will be found in section
4.
At low [ClO2]0 values, the simulations predict that the domain

where the uniform steady state and the stationary patterns are
simultaneously stable (subcritical regime) tremendously in-
creases since the experimental path crosses the Turing line above
point TS (see Figure 8). The limit of this domain is reported in
Figure 9 (line T1). At the same time, the patterns become very
stiff and the dynamics slows down so that, at typical experi-
mental times, they remain in a quasi-frozen state, retaining
irregular planforms. Although no systematic bistability between
a patterned state and a uniform state was found in the
experiments, these tendencies were also observed. Coexistence
of a pattern and a uniform state was actually found in a narrow
region around point ([MA]0 ) 7.8 × 10-4 M, [ClO2]0 ) 2.5 ×
10-5 M) where localized patterns, a phenomenom linked to
subcritical regimes,55 were observed.59 Moreover, when [ClO2]0

Figure 9. Plane section ([MA]0, [ClO2]0) of the pattern phase diagram
for two different values of [PVA]. Experimental observations: 0, sta-
tionary uniform states; 2, Turing patterns; O, oscillatory states;s, limit
of Turing (TEXP) and oscillatory (OEXP) domains (estimated from these
data). Numerical simulations: - - -, Turing bifurcation (T0);-- , limit
of bistability between uniform and patterned states (T1); -, limit ofoscillatory domain (OS).

Figure 10. Sequence of patterns as a function of [MA]0. Fixed
parameters: [PVA]0 ) 10 g/L, [ClO2]0 ) 6 × 10-4 M. Experimental
data: (a) [MA]0 ) 1.25 × 10-3 M; (b) [MA]0 ) 1.5 × 10-3 M; (c)
[MA]0 ) 1.9 × 10-3 M. Numerical data: (a) [MA]0 ) 1.1 × 10-3 M;
(b) [MA]0 ) 1.2 × 10-3 M; (c) [MA]0 ) 1.45 × 10-3 M.

Quantitative Modeling of Turing Patterns J. Phys. Chem. A, Vol. 103, No. 12, 1999 1797

patterns which we strictly associate with non oscillatory states
of the CSTR, and the nonstationary states including traveling
waves and various oscillatory states which may or may not be
associated with oscillations in the CSTR.
Considering the extreme simplicity of the LE model compared

to the actual chemical kinetics, there is a striking agreement
between computational and experimental results, at least when
[ClO2]0 is not too low and [PVA]0 not too high. In both cases,
the Turing domain bracketed between a high [SI3-] uniform
steady state and an oscillatory state respectively at low and high
[MA]0 shifts to higher [MA]0 as [ClO2]0 is increased. The
computed Turing bifurcation line agrees almost quantitatively
with the experimental line. The general features of the experi-
mental and numerical Hopf lines also agree well, though the
numerical limits are nearly systematically shifted forward with
respect to the corresponding experimental lines.
There is also a very good agreement between computed and

experimentally observed pattern planform distributions. In
particular, the classical sequence of patterns when the distance
to onset increases is well reproduced in both cases (Figure 10).
If one starts from low [MA]0 and increases this parameter, a
transition occurs from the uniform dark state (high [SI3-]) to a
stationary triangular array of clear spots, the Hπ hexagon pattern
of the model. When [MA]0 is further increased, the spot patterns
turns into a stationary stripe patterns. Although in experiments
the domain of stripe patterns is less widespread than in the
model, the general trends are followed. In both cases, the extent
of the domain of stripes increases with [ClO2]0. The model even
predicts that, at point Th in Figure 3, reached for [ClO2]0 ) 2.5
× 10-3 M, the Hπ domain vanishes at onset and that, for larger
values of [ClO2]0, a H0 state should develop. The latter is not

observed experimentally, but at such high values of [ClO2]0,
the pattern amplitude becomes so small that any pattern would
be difficult to detect experimentally. This problem is actually
encountered when [ClO2]0 > 1.4 × 10-3 M; for these values,
no patterned states were detected, even for large PVA concen-
trations.
There seems to be some discrepancy between the model

calculations and the experiments at high [PVA]0 and low [ClO2]0
below the oscillatory domain. In the experiments, when [MA]0
increases, the Turing state is followed by a new uniform steady
state, characterized by a lower value of complex [SI3-] (clear
color). No similar computed bound appears in Figure 9. As a
matter of fact, when [MA]0 increases, the computed stationary
pattern becomes unstable and is replaced by an oscillatory state.
Since the volume of the gel is small and in contact with the
large volume of the CSTR which remains stationary, we suspect
that, in the experiment, the gel does not oscillate because it is
forced into a uniform steady state. This interpretation goes
beyond our present 2-D approximation so that the computed
limits are not really significant and have not been reported on
the diagrams. More general considerations on the role of the
coupling between the gel and the CSTR will be found in section
4.
At low [ClO2]0 values, the simulations predict that the domain

where the uniform steady state and the stationary patterns are
simultaneously stable (subcritical regime) tremendously in-
creases since the experimental path crosses the Turing line above
point TS (see Figure 8). The limit of this domain is reported in
Figure 9 (line T1). At the same time, the patterns become very
stiff and the dynamics slows down so that, at typical experi-
mental times, they remain in a quasi-frozen state, retaining
irregular planforms. Although no systematic bistability between
a patterned state and a uniform state was found in the
experiments, these tendencies were also observed. Coexistence
of a pattern and a uniform state was actually found in a narrow
region around point ([MA]0 ) 7.8 × 10-4 M, [ClO2]0 ) 2.5 ×
10-5 M) where localized patterns, a phenomenom linked to
subcritical regimes,55 were observed.59 Moreover, when [ClO2]0

Figure 9. Plane section ([MA]0, [ClO2]0) of the pattern phase diagram
for two different values of [PVA]. Experimental observations: 0, sta-
tionary uniform states; 2, Turing patterns; O, oscillatory states;s, limit
of Turing (TEXP) and oscillatory (OEXP) domains (estimated from these
data). Numerical simulations: - - -, Turing bifurcation (T0);-- , limit
of bistability between uniform and patterned states (T1); -, limit ofoscillatory domain (OS).

Figure 10. Sequence of patterns as a function of [MA]0. Fixed
parameters: [PVA]0 ) 10 g/L, [ClO2]0 ) 6 × 10-4 M. Experimental
data: (a) [MA]0 ) 1.25 × 10-3 M; (b) [MA]0 ) 1.5 × 10-3 M; (c)
[MA]0 ) 1.9 × 10-3 M. Numerical data: (a) [MA]0 ) 1.1 × 10-3 M;
(b) [MA]0 ) 1.2 × 10-3 M; (c) [MA]0 ) 1.45 × 10-3 M.

Quantitative Modeling of Turing Patterns J. Phys. Chem. A, Vol. 103, No. 12, 1999 1797

patterns which we strictly associate with non oscillatory states
of the CSTR, and the nonstationary states including traveling
waves and various oscillatory states which may or may not be
associated with oscillations in the CSTR.
Considering the extreme simplicity of the LE model compared

to the actual chemical kinetics, there is a striking agreement
between computational and experimental results, at least when
[ClO2]0 is not too low and [PVA]0 not too high. In both cases,
the Turing domain bracketed between a high [SI3-] uniform
steady state and an oscillatory state respectively at low and high
[MA]0 shifts to higher [MA]0 as [ClO2]0 is increased. The
computed Turing bifurcation line agrees almost quantitatively
with the experimental line. The general features of the experi-
mental and numerical Hopf lines also agree well, though the
numerical limits are nearly systematically shifted forward with
respect to the corresponding experimental lines.
There is also a very good agreement between computed and

experimentally observed pattern planform distributions. In
particular, the classical sequence of patterns when the distance
to onset increases is well reproduced in both cases (Figure 10).
If one starts from low [MA]0 and increases this parameter, a
transition occurs from the uniform dark state (high [SI3-]) to a
stationary triangular array of clear spots, the Hπ hexagon pattern
of the model. When [MA]0 is further increased, the spot patterns
turns into a stationary stripe patterns. Although in experiments
the domain of stripe patterns is less widespread than in the
model, the general trends are followed. In both cases, the extent
of the domain of stripes increases with [ClO2]0. The model even
predicts that, at point Th in Figure 3, reached for [ClO2]0 ) 2.5
× 10-3 M, the Hπ domain vanishes at onset and that, for larger
values of [ClO2]0, a H0 state should develop. The latter is not

observed experimentally, but at such high values of [ClO2]0,
the pattern amplitude becomes so small that any pattern would
be difficult to detect experimentally. This problem is actually
encountered when [ClO2]0 > 1.4 × 10-3 M; for these values,
no patterned states were detected, even for large PVA concen-
trations.
There seems to be some discrepancy between the model

calculations and the experiments at high [PVA]0 and low [ClO2]0
below the oscillatory domain. In the experiments, when [MA]0
increases, the Turing state is followed by a new uniform steady
state, characterized by a lower value of complex [SI3-] (clear
color). No similar computed bound appears in Figure 9. As a
matter of fact, when [MA]0 increases, the computed stationary
pattern becomes unstable and is replaced by an oscillatory state.
Since the volume of the gel is small and in contact with the
large volume of the CSTR which remains stationary, we suspect
that, in the experiment, the gel does not oscillate because it is
forced into a uniform steady state. This interpretation goes
beyond our present 2-D approximation so that the computed
limits are not really significant and have not been reported on
the diagrams. More general considerations on the role of the
coupling between the gel and the CSTR will be found in section
4.
At low [ClO2]0 values, the simulations predict that the domain

where the uniform steady state and the stationary patterns are
simultaneously stable (subcritical regime) tremendously in-
creases since the experimental path crosses the Turing line above
point TS (see Figure 8). The limit of this domain is reported in
Figure 9 (line T1). At the same time, the patterns become very
stiff and the dynamics slows down so that, at typical experi-
mental times, they remain in a quasi-frozen state, retaining
irregular planforms. Although no systematic bistability between
a patterned state and a uniform state was found in the
experiments, these tendencies were also observed. Coexistence
of a pattern and a uniform state was actually found in a narrow
region around point ([MA]0 ) 7.8 × 10-4 M, [ClO2]0 ) 2.5 ×
10-5 M) where localized patterns, a phenomenom linked to
subcritical regimes,55 were observed.59 Moreover, when [ClO2]0

Figure 9. Plane section ([MA]0, [ClO2]0) of the pattern phase diagram
for two different values of [PVA]. Experimental observations: 0, sta-
tionary uniform states; 2, Turing patterns; O, oscillatory states;s, limit
of Turing (TEXP) and oscillatory (OEXP) domains (estimated from these
data). Numerical simulations: - - -, Turing bifurcation (T0);-- , limit
of bistability between uniform and patterned states (T1); -, limit ofoscillatory domain (OS).

Figure 10. Sequence of patterns as a function of [MA]0. Fixed
parameters: [PVA]0 ) 10 g/L, [ClO2]0 ) 6 × 10-4 M. Experimental
data: (a) [MA]0 ) 1.25 × 10-3 M; (b) [MA]0 ) 1.5 × 10-3 M; (c)
[MA]0 ) 1.9 × 10-3 M. Numerical data: (a) [MA]0 ) 1.1 × 10-3 M;
(b) [MA]0 ) 1.2 × 10-3 M; (c) [MA]0 ) 1.45 × 10-3 M.

Quantitative Modeling of Turing Patterns J. Phys. Chem. A, Vol. 103, No. 12, 1999 1797

After this !H2SO4"0 jump, many F-state bubbles are trapped
and the dynamic of the pattern is then ruled by that of the
F-state bubbles. These may divide, pulsate, and eventually
die by overgrowth with the spontaneous development of the
M-state in their middle or a local asymmetric commutation
of a #−$front to a #+$front, which deforms the circular sym-
metry of the bubble. The system no longer settles into a
stationary pattern mode. Note that the spot pattern is inserted
in a large discoid M-state domain disconnected from the
mask #except at one point, at 12 o’clock in the snapshots—
Fig. 10, probably due to some local “boundary imperfec-
tion”$. The diameter of this discoid M-state domain under-
goes small-amplitude oscillations with a period of about
24 min, similar to that of the oscillatory F-state spots. The
sequence of snapshots in Fig. 11 details the breathing dy-
namics of a small F-state spot of Fig. 10. Note the color
changes inside the spot when it grows or shrinks, indicating
that the pH decreases when the spot shrinks and vice versa.

We have also explored the effect of ferrocyanide feed
concentration on pattern formation in the disk OSFR. For
simplicity reasons, let us only consider the case of stationary
patterns at !PA"0=4 mM and !H2SO4"0=2.86 mM. In these
conditions, the gel is in the stationary F-state when
!K4Fe#CN$6"0!5 mM. At !K4Fe#CN$6"0=5 mM, the gel
switches to the stationary uniform M-state; no nontrivial
patterns are observed. Above a critical !K4Fe#CN$6"0
around 10 mM, the M-state become unstable and a stationary
M-state labyrinthine pattern forms, as illustrated in Fig. 12#a$
for !K4Fe#CN$6"0=15 mM. The area covered by the
M-state and the interconnections in the network increase
with increasing !K4Fe#CN$6"0 !Fig. 12#b$". At

!K4Fe#CN$6"0=30 mM, similarly to observations made at
high !H2SO4"0 #Fig. 9$, the stationary network pattern loses
stability and the system is dominated by the birth and death
dynamics of F-state spots !Fig. 12#c$".

Test experiments were also made as a function of tem-
perature. At !PA"0=2 mM and !K4Fe#CN$6"0=20 mM, sta-
tionary lamellae patterns could be observed at 22 and 33 °C
by adjusting the value of !H2SO4"0. The pattern parameter
domain shifts to higher acid feed with decreasing tempera-
ture. Noteworthy, at 22 °C, no CSTR oscillation is observed
but only bistability.33,34

DISCUSSION

In this paper, we revisit the conditions for the observa-
tions of reaction-diffusion patterns when operating the
ferrocyanide–iodate–sulfite reaction in a one-side-fed spatial
reactor. Despite the fantastic patterning capacity of this sys-
tem #due to morphological front instabilities and an Ising–
Bloch front bifurcation$, it was left dormant for about 15
years, contrary to the case of the CIMA reaction. Due to
some unnoticed and thus uncontrolled charge contents of the
gels, the original experimental observations were difficult to
reproduce. Lets us point out the similarities and differences
between the original and our present experimental method.
Both sets of experiments were made in the same range of
chemical feed parameters and temperature. The CSTR resi-
dence time in the original experiments ranged from 36 to
240 s, which is shorter by a factor 6 or equivalent to ours.
Conversely, the volume of our stirred tank reactor is signifi-
cantly greater to minimize feedback effects of the contents of
the gel on the actual composition of the CSTR—i.e., to mini-
mize global coupling effects. In this type of reactor, global
coupling cannot be totally avoided but in the present experi-
ments it does not drive the overall pattern dynamics.46 The
main differences come from the polymer gels used in the two
sets of experiences and the way they are set in contact with
the CSTR contents. The original experiments used 16%
weight polyacrylamide gels films #0.2–0.6 mm thick$ in con-
tact with the CSTR contents through an aluminum oxide and
a nitrocellulose membrane to provide, respectively, structural
rigidity and a white backing for visualization. We use no
such composite of porous membrane with unknown chemical
adsorption properties. In our experiments, a single porous
material is used—agarose #4% weight$—a better character-
ized gel that should make experimental reproducibility
easier. Our gels are thicker #w=0.75 mm for the disk geom-
etry OSFR and 1.0 mm in the annular one$. Pattern develop-
ment can be very sensitive to the thickness w as shown in the
original set of publications38 and in recent studies with other
bistable systems.47–49 Li et al.38 report observation of no pat-
terns for gels thicker than 0.4 mm, which is not our case.
However, because the acrylamide and agarose gels have very
different structures and because of the presence of additional
membranes in the original experiments, it is difficult to com-
pare the effective thickness—i.e., characteristic exchange
time between the feed surface and the opposite face of the
gel reactors—in the old and new sets of experiments. Further

FIG. 11. Breathing small F-state domain. Period of oscillations 24 min.
Conditions as in Fig. 10. Sampling time of snapshots from left to right and
down 4 min. Size of the frames 3.5"3.5 mm.

FIG. 12. Pattern observed at different !K4Fe#CN$6"0. Experimental condi-
tions: !H2SO4"0=2.86; !PA"0=4 mM, !K4Fe#CN$6"0=15 #a$, 25 #b$,
30 mM #c$.

026105-7 Patterns in the FIS reaction Chaos 18, 026105 !2008"
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CDIMA (chlorine dioxide, 
iodine, malonic acid) 
reaction after 12, 20, 35 and 
52 minutes [34]. 

 

Belousov–Zhabotinsky 
(BZ) reaction [35] 

 
Figure 2. Examples of chemical patterns. 

 

4.2 Numerical implementation 
 
The patterns induced by the GS model have been the subject of numerous studies from the seminal 
work by Pearson [36] (see, e.g., [37-42]), including many for entertainment purposes2, and a 
classification of the GS patterns has been proposed (see Figure 3), depending on the (𝐹, 𝑘) values. 
Consequently, many implementations of the GS reaction can be found, based on finite differences and 
forward Euler integration scheme for efficiency reasons ([43-45], among others, and the very complete 
webpage of R. Munafo [46]), mainly in 2D. Very few [47-49] apply the finite element method, 
especially Abaqus. One study [50] includes mechanical coupling, but no indication on the 
implementation process is given, nor if extra DOFs have been introduced, unfortunately.  
We have implemented the GS reaction in Abaqus by introducing DOFs 12 and 13; the details of the 
RHS vector and of the AMATRX matrix have been adapted from [48] by considering constant 
diffusion coefficients, in particular. Computations have been performed with the ‘coupled temp-
displacement’ procedure, even if no mechanical nor temperature field is computed. In order to 
evaluate the ability of our implementation to simulate a GS process accurately, all the results are 
compared with those given by the Python script written by D. Bennewies [44]. 
 

  
 

(a) (b) 

Figure 3. (a) Types of patterns obtained with the GS reaction, and (b) their position in the (𝐹, 𝑘) plane (using 
𝐷! = 2𝐷! = 2×10!!) as defined in [36]. For (𝐹, 𝑘) points where no pattern is specified, a constant 

homogeneous field for 𝑢 as well as for 𝑣 is expected. 

 
                                                             
2 For instance, ‘Gray-Scott reaction diffusion’ keywords in YouTube gives 779 results. 
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Fig. 6. Flower-like pattern. Pictures taken (a) 12 min; (b) 20 min; (c) 35 min; (d) 52 min
after the initial growth of the pattern.

the CSTR corresponding to the vicinity of this critical point.(36) Further-
more, patterns develop behind a front that propagates into the previously
existing uniform state that has now become unstable. What is remarkable
is that this front exhibits morphological instabilities giving rise to growth
modes involving spot division or finger splitting.(36) Figure 6 illustrates the
finger tip splitting growth mechanism for Turing pattern which ultimately
leads to stripes.

3.2. Bistable CSTR

When the CSTR evolves in its bistable region, as it can be the case for
the CDI(37) (or also FIS(38)) reaction, a first important aspect is the deter-
mination of the possible corresponding states in the gel. Let one consider
the situation along the direction orthogonal to the CSTR-gel reactor boundary,
i.e., along the depth of the gel. If the CSTR is in the F branch, at each
point along the gel, fresh reactants are brought by diffusion from the
feeding edge, where the concentration is kept fixed. Close to this edge, the
extent of the reaction is small and the chemical composition remains close
to that of the flow branch. As we move away from this edge, the extent of
the reaction becomes larger because the amount of fresh reactants that
reaches the corresponding space point is limited by its transport through
molecular diffusion. So, if the gel film is thick enough, the regions of the gel
far from the feeding edge may eventually belong to a state laying on the T
branch. In such a case, the composition changes from branch F to branch
T somewhere inside the gel. Thus, for the same F state in the CSTR, one
may observe two quite different composition profiles as a function of w, the
thickness of the gel. If w is very small, the chemical composition in the gel
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Fig. 7.4 Spiral waves in the BZ reaction. The pattern develops after a break of a circular wave.
The same intervals between snapshots (a–h) and the same initial concentrations of reactants as in
Fig. 6.6. Reproduced with permission from [17]

about the center of the grid was then 
perturbed to (U = ln,V = 114). These 
conditions were then perturbed with f 1% 
random noise in order to break the square 
symmetry. The system was then integrated 
for 200,000 time steps and an image was 
saved. In all cases, the initial disturbance 
propagated outward from the central 
square, leaving patterns in its wake, until 
the entire grid was affected by the initial 
square perturbation. The propagation was 
wave-like, with the leading edge of the 
perturbation moving with an approximately 
constant velocity. Depending on the param- 
eter values, it took on the order of 10,000 to 
20,000 time steps for the initial perturbation 
to spread over the entire grid. The propaga- 
tion velocity of the initial perturbation is 
thus on the order of 1 x space units per 
time unit. After the initial period during 
which the perturbation spread, the system 
went into an asymptotic state that was either 
time-independent or time-dependent, de- 
pending on the parameter values. 

Figures 2 and 3 are phase diagrams; one 
can view Fig. 3 as a map and Fig. 2 as the key 
to the map. The 12 patterns illustrated in 
Fig. 2 are designated by Greek letters. The 
color indicates the concentration of U with 
red representing U = 1 and blue represent- 
ing U = 0.2; yellow is intermediate to red 
and blue. In Fig. 3, the Greek characters 
indicate the pattern found at that point in 

parameter space. There are two additional 
symbols in Fig. 3, R and B, indicating 
spatially uniform red and blue states, respec- 
tively. The red state corresponds to (U = 
l,V = 0) and the blue state depends on the 
exact parameter values but corresponds 
roughly to (U = 0.3,V = 0.25). 

Pattern a is time-dependent and consists 
of fledgling spirals that are constantly col- 
liding and annihilating each other: full 
spirals never form. Pattern is time-depen- 
dent and consists of what is generally called 

phase turbulence (8), which occurs in the 
vicinity of a Hopf bifurcation to a stable 
periodic orbit. The medium is unable to 
synchronize so the phase of the oscillators 
varies as a function of position. In the 
present case, the small-amplitude periodic 
orbit that bifurcates is unstable. Pattern y is 
time-dependent. It consists primarily of 
stripes but there are small localized regions 
that oscillate with a relatively high frequen- 
cy (- The active regions disappear, 
but new ones always appear elsewhere. In 
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Fig. 1. Phase diagram of the reaction kinetics. 
Outside the region bounded by the solid line, 
there is a single spatially uniform state (called 
the trivial state) (U = 1, V = 0) that is stable for 
all (F, k). Inside the region bounded by the solid 
line, there are three spatially uniform steady 
states. Above the dotted line and below the 
solid line, the system is bistable: There are two 
linearly stable steady states in this region. As F 
is decreased through the dotted line, the non- 
trivial stable steady state loses stability through 
Hopf bifurcation. The bifurcating periodic orbit 
is stable for k < 0.035 and unstable for k > 
0.035. No periodic orbits exist for parameter 
values outside the region bounded by the solid 
line. 

. Ig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which 
are used in Fig. 3 to indicate the pattern found at a given point in parameter space. 

Flg. 3. The map. The Greek letters 
indicate the location in parameter 
space where the patterns in Fig. 2 
were found; B and R indicate that 
the system evolved to uniform blue 

0.06 and red states, respectively. 
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4.3 Configuration studied 
 
The configuration studied is a square domain 2.5×2.5 mm2, which is meshed with 250×250 fully 
integrated linear square elements (i.e., with an element size of 0.01×0.01 mm2), over which as many 
user elements are superimposed for the activation of DOFs 12 and 13 (representing the concentrations 
of 𝑈 and 𝑉, respectively) and for the integration of the reaction-diffusion process. A transient ‘coupled 
temp-displacement’ procedure is applied. Periodic boundary conditions are prescribed to DOFs 12 and 
13 along the border of the domain, as set in [44]. The following initial conditions for 𝑢 and 𝑣 are 
defined using a DISP user subroutine: 
 
 𝑥   ∈   Ω   ⇒ 𝑢 = 0.5 − 0.01𝛿 𝑥 ;   𝑥   ∉   Ω   ⇒ 𝑢 = 1

𝑥   ∈   Ω   ⇒ 𝑣 = 0.25 + 0.01𝛿 𝑥 ;   𝑥   ∉ Ω   ⇒ 𝑣 = 0 (4) 

 
where Ω is a rectangular domain 0.125(1+  𝛿)×0.125(1+  𝛿) with 𝛿   ∈ [0,1]a random perturbation. 
Finally, 𝐷! and 𝐷! have been set to 10-5 mm2/s and 2.10-5 mm2/s, respectively. Several 𝐹, 𝑘  
parameters have been considered, as listed in Table 1. 

Table 1. Reaction parameters considered (among those of [44]). 

� 0.006 0.022 0.026 0.046 0.062 

𝑘 0.037 0.049 0.061 0.063 0.0609 

Expected 
pattern 

[44,46] 

Propagating 
wavefronts 

(Type ξ) 

Chaotic 
oscillations 

(Type β) 

Solitons 

(Type λ) 

Worms 

(Type µ) 

Negatons 

(Type π) 

 

4.4 Results 
 
The Abaqus results for 𝑢 (NT12) and 𝑣 (NT13) are presented in Figure 4(a) to 8(a), with the 
corresponding Python reference results for 𝑢 shown on (b). All Abaqus computations have been 
performed with a constant time increment of 10 s, while the python’s one is equal to 1 s. It can be 
observed that our implementation in the Abaqus code is able to reproduce quite well the results 
obtained with another software, for various configurations.  
It may be noted that the U-skate geometries exhibited by Munafo [41,46]) could not be generated, as 
in [44]. 
 

  
(a) (b) 

Figure 4. (a )  𝑢 and 𝑣  fields obtained with Abaqus and (b) 𝑢 field computed with python following [44], using 
𝐹, 𝑘 = 0.006,0.037  at 𝑡 = 800  𝑠. 
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(a) (b) 

Figure 5. Same as Figure 4, with F, k = 0.022,0.049  at t = 800  s. 
 

  
(a) (b) 

Figure 6. Same as Figure 4, with F, k = 0.026,0.061  at t = 2500  s. 
 

  
(a) (b) 

Figure 7. Same as Figure 4, with F, k = 0.046,0.063  at t = 5000  s 
 

  
(a) (b) 

Figure 8. Same as Figure 4, with F, k = 0.062,0.0609  at t = 5000  s 

 
5 Discussion 
 
An important feature observed in our simulations is a non constant velocity of the pattern front, with a 
strong influence of the 𝐹, 𝑘  parameters. This behavior is consistent with results obtained by other 
methods, especially in [44]. From the Figure 4 to 8, it might be observed that the front velocity 
computed by Abaqus has the same order of magnitude than the one obtained using Python. 
We have also investigated the effects of the element size and of the time increment (see [46] for a 
more complete investigation of the time increment influence). The influence of the element size is 
illustrated in Figure 9 for 𝐹, 𝑘 = 0.006,0.037 . When the element size increases, the generated 
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pattern is strongly influenced by the mesh structure and tends to a square rather than a circle. 
Moreover, the velocity of the pattern front is increased because of a rapidly vanishing 𝑉 field that 
annihilates the reaction process. 
 

(a) Element size: 
0.012 mm2 

 

(b) Element size: 
0.0252 mm2 

 

(c) Element size: 
0.052 mm2 

 
Figure 9. Influence of the element size on the Abaqus results at 𝑡 = 800  𝑠 

for u (left) and v (right), with F, k = 0.006,0.037 . 
 
In contrast, decreasing the time increment has no influence on the Abaqus results and on their 
consistency with [44], except for 𝐹, 𝑘 = 0.022,0.049  where the intensities of the pattern 
oscillations decrease and a steady state is finally reached for 𝑡 about 3400 s. For this configuration, the 
influence of the time increment is shown in Figure 10: when it is decreased from 10 s to 1 s, no steady 
state is reached with Abaqus up to 5000 s and chaotic oscillations are observed, as in [44]. 
 

(a) Reference pattern 
for 𝑢 [44] 

 

(a) Element size: 
0.012 mm2, time 
increment: 10 s 
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(b) Element size: 
0.0252 mm2, time 

increment: 1 s 

 
Figure 10. Influence of the time increment on the Abaqus results at 𝑡 = 5000  𝑠 for 𝑢 (left) and 𝑣 (right), with 

F, k = 0.022,0.049 . 

 
6 Conclusion 
 
An appropriate application of user elements allows the extension of Abaqus capabilities, including the 
modification of library elements, the activation of hidden DOFs, and the addition of various physical 
processes with or without couplings. This study has been focused on the activation of DOFs and on the 
addition of chemical reactions in Abaqus. An application to the Gray-Scott model has been made 
successfully. However, this model, though spectacular, has very complex features in term of spatio-
temporal evolution, intimately linked with the used parameters. This complexity leads to some 
difficulties in the definition of the finite element setup in terms of time increment and mesh. Further 
work will extend the proposed approach to 3D simulations, reactions involving 3 species or more, and 
mechanical coupling. 
To include mechanical interactions, especially, it will be only necessary to introduce in the UELs the 
related contribution to the weak formulation. Furthermore, a 4th layer might be added to include the 
coupling between DOF 11 and mechanical fields. Equation (1) thus becomes 
 

 

 

(5) 
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