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Abstract :

The paper is devoted to elasto-plastic models for crystalline materials within the constitutive framework
of non-local crystalline plasticity and crystalline elasto-plastic materials with microstructural defects,
respectively. A non-local crystal plasticity model based on a multi-slip flow rule, coupled with diffusion
like evolution equations for scalar dislocation densities, with hardening influenced by dislocations and
the back stress involved in the activation condition is presented. The geometrical non-Riemannian struc-
ture of the material space which is associated with an elasto-plastic crystalline material with defects
at the lattice level, is characterized and discussed in terms of connections with non-zero torsion and
non-zero curvature.

Mots clefs : multiplicative decomposition, elasto-plastic, crystalline materials, flow rule, defects,
connection and torsion, evolution equations.

1 Introduction
We propose and analyze elasto-plastic models for crystalline materials as extension of Teodosiu’s models
in two directions : non-local crystal plasticity and crystalline elasto-plastic materials withmicrostructural
defects. Kröner and Teodosiu [1] argue that plasticity and viscoplasticity are typical properties of crys-
talline materials, which are generated by existing inside defects. Lattice continuous defects have been
defined using the differential geometry approaches by de Wit [2] (in a linear approximation), Kondo and
Yuki [3], Kröner [4]. Following Kröner [5], the geometrical non-Riemannian structure of the material
space, associated with an elasto-plastic crystalline material with defects at the lattice level, is characte-
rized by a connection with non-zero torsion and non-zero curvature.

Teodosiu [6] introduced the concept of local, relaxed (stress free), isoclinic configurations in order to
define correctly the elastic and plastic parts of the deformation gradient, called elastic and plastic dis-
tortions. The elastic distortion is a measure of deformation of crystalline lattice, while the plastic is
associated with an unsltressed state. Thus the (anholonomic) deformation gradient is multiplicatively
decomposed into elastic and plastic components. Material response is elastic with respect to the iso-
clinic configurations, while the plastic distortion and internal variables are defined by the appropriate



evolution equations, see also Teodosiu and Sidoroff [7], as well as Cleja-Ţigoiu and Soós [8] for the
material symmetry concept. In section 2.1, as a natural generalization of the models developed by Teo-
dosiu et al. [9], Cleja-Ţigoiu and Paşcan [10] proposed a crystal plasticity model based on a multi-slip
flow rule, coupled with diffusion like evolution equations for scalar dislocation densities, with hardening
influenced by dislocations and the back stress involved in the activation condition dependent on the gra-
dients of dislocation densities. The variational formulation of the boundary value problem is provided
in section 2.2.

In section 3 we introduce two types of models for crystalline elasto-plastic materials with microstruc-
tural defects. We shortly present here certain fundamental results that will be useful in describing the
behaviour of elasto-plastic materials with structural defects in section 3.1. For mathematical concepts
about affine connections on manifolds and geometry of Riemann-Cartan manifolds see Schouten [11],
Clayton [12], Yavari [13]. We follow the presentation from Cleja-Ţigoiu and Ţigoiu [14].

Teodosiu [15] -[17] developed an elastic type theory of materials with initial stresses and hyperstresses
induced by dislocations, see section 3.2. In section 3.3 we discuss certain aspects related to the elasto-
plastic models proposed by Cleja-Ţigoiu [18], Cleja-Ţigoiu et al. [19] and [20]. These papers aim : to
describe the behaviour of crystalline materials containing defects by non-local fields that are smooth over
an interatomic length scale and at the time of micro-seconds ; to elaborate a strategy to solve the initial
boundary value problems for elasto-plastic materials with defects, such as dislocations, disclinations
and grain boundaries ; to propose the algorithms to simultaneously solve the incremental equilibrium
equation, coupled with partial differential equations which describe the defects evolution.

2 Non-local crystal plasticity
Teodosiu [6] assumes that, at least in principle, for any material point X a neighborhoodNX can be cut
out from the body and relax it (which means that the macroscopic stress is vanishing) maintaining the
position and values of dislocations within NX . The local relaxed configurations are defined to within
a rigid rotation. Since the elastic reversible deformation represents the deformation of the crystalline
lattice the indetermination in choosing the relaxed configuration has to be eliminated. By assuming
that in all local relaxed configurations of NX the crystalline directions are parallel to each other these
configurations, called isoclinic, are uniquely defined relatively a fixed reference configuration, apart
from the orthogonal maps, which are elements of the material symmetry group.

2.1 Slip systems and dislocations
We shortly present the crystal plasticity model proposed by Cleja-Ţigoiu and Paşcan [10]. The model
generalizes the model developed by Teodosiu et al. [9], it is based on the multiplicative decomposition
and on multi-slip flow rule.

Axiom The deformation gradient F = ∇χ(·, t), associated with the motion, χ, of the body B, is multi-
plicatively decomposed into elastic and plastic components, Fe and Fp, given by

F = FeFp, (1)

As a direct consequence of the multiplicative decomposition of the deformation gradient the velocity
gradient, L = Ḟ F−1 relates to the rate of plastic distortion, Lp, and the rate of elastic distortion, Le,



through

L = Le + Fe Lp (Fe)−1 , Le = Ḟe (Fe)−1 , Lp = Ḟp (Fp)−1 . (2)

Axiom Material response is elastic with respect to the isoclinic configurations expressed either by

Π

ρ̃
= C[1

2
(Ce − I)], where Ce = (Fe)TFe (3)

in terms of Piola-Kirchhoff stress tensor Π, or in the actual configuration expressed in terms of Cauchy
stress, T, through

T

ρ̂
= FeC[1

2
(Ce − I)](Fe)T . (4)

The elastic compliance matrix in the actual configuration, E , is derived from the matrix of the elastic
material, C, with the constant coefficients given with respect to an isoclinic (i.e. lattice) configuration
by the pushing away procedure, namely

E [X] = Fe(C
[
(Fe)TXFe

]
)(Fe)T , ∀ X a symmetric tensor. (5)

In the paper ρ̃, ρ̂ and ρ̂0 denote mass densities with respect to the lattice configuration, current and
reference configurations, respectively.

Axiom The evolution in time of the plastic distortion is described by multi-slips in the appropriate
crystallographic system (i.e. in the isoclinic configuration) as given by Kroöner and Teodosiu [1]

Ḟp (Fp)−1 =

N∑
α=1

να(s̄α ⊗ m̄α), (6)

where να are the plastic shear rates in the slip system α, m̄α is the normal to the slip plane and s̄α is the
slip direction.

In the actual configuration the slip system, (mα, sα), is defined by the formulae

sα = Fes̄α, mα = (Fe)−T m̄α. (7)

Theorem. Rate form of the adopted constitutive framework by Cleja-Ţigoiu and Paşcan [10] : The
differential system which defines the unknownsT/ρ,Fe, γα, sα,mα, ζαρα is given in the following form



written below for a given history of the deformation gradient, t→ F(t), t ∈ [t0, t
∗) :

d

dt

(
T

ρ̂

)
= L

T

ρ̂
+

T

ρ̂
LT + E [D]−

N∑
α=1

ναE
[
{sα ⊗mα}S

]
−

−
N∑
α=1

να (sα ⊗mα)
T

ρ̂
− T

ρ̂

N∑
α=1

να (sα ⊗mα)T

Ḟe (Fe)−1 = L−
N∑
α=1

να (sα ⊗mα)

γ̇α =
ρ̂0

ρ̂
γ̇α0

∣∣∣∣ 1

ζα
(Tmα · sα − ταb )

∣∣∣∣n sign (Tmα · sα − ταb )H (Fα) , α = 1, . . . , N

ταb = κ2(s̄α · ∇ρα)(m̄α · ∇ρα)

(8)

where να = γ̇α,

ṡα = Lsα −
N∑
β=1

νβ
(
sβ ⊗mβ

)
mα, α = 1, . . . , N

ṁα = −LTmα +
N∑
β=1

νβ
(
mβ ⊗ sβ

)
mα, α = 1, . . . , N

ζ̇α =
N∑
β=1

hαβ
∣∣∣γ̇β∣∣∣ , α = 1, . . . , N

(9)

There are considered either a local evolution equation for the dislocation density

ρ̇α =
1

b

(
1

Lα
− 2ycρ

α

)
|να| , Lα = K

∑
q 6=α

ρq

−1/2

(10)

or a non-local one

ρ̇α = D |να|
(
k∆ρα − ∂ψT

∂ρα

)
, α = 1, . . . , N. (11)

The yield functionFα,which enters the activation conditionFα ≥ 0 via the Heaviside function involved
in the expression of the plastic shear rates is defined as

Fα(T, sα,mα, ζα, ρα,∇ρα) :=| 1

ζα
(τα − ταb ) | −ζα, (12)

were τα = Tmα · sα is the effective reduced shear stress.

The initial conditions have to be attached to the differential system, as well as as a boundary value



problem has to be defined in connection with the partial differential equation (10).

Boundary conditions : Solving the equilibrium problem for viscoplastic crystalline materials, contai-
ning dislocations, the macro boundary conditions which traditionally describe the traction and velocity
have to be completed with micro boundary conditions in order to accurately describe the nature of the
plastic deformation at micro-scale, from a physical point of view. From mathematical point of view the
integration of the system of partial differential equations requires additional boundary conditions.

We remark that Teodosiu [6] mentioned that the shear rate is expressed by γ̇α = bα ααM vα, which
means that it depends on the magnitude of the Burgers vector, on the total length of mobile dislocation
and the mean velocity of dislocation loop.

Comments of the model proposed by Cleja-Ţigoiu and Paşcan [10] :

- The evolution equation for ζα, i.e. the hardening law, is described in terms of the hardening matrix
represented by Teodosiu et al. [9]

- The viscoplastic flow rule associated with the deformation process is given in the form similar to those
introduced by Teodosiu and Sidoroff [7], but back stress not being included.

- The evolution equation (10) is given by Mecking and Kocks [22] and a diffusive evolution equation
of the type (11) is considered by Bortoloni and Cermelli [23]. Herein an appropriate expression for the
potential ψT is identified by considering the equality between the functions in the right hand side of
equations (10) and (11) with k = 0.

- The expression of the back stress involved in the activation for α− slip system is proposed by Cleja-
Ţigoiu and Paşcan [21] (within the constitutive framework developed by Cleja-Ţigoiu [24]) to be given
by

ταb = div(κ3 m̄α × (αN )T s̄α) + κ2(s̄α · ∇ρα)(m̄α · ∇ρα). As a particular case, namely for κ3 = 0,

the expression of the back stress follows

ταb = κ2(s̄α · ∇ρα)(m̄α · ∇ρα). (13)

2.2 Variational problem
The weak formulation associated with the balance equations at time t can be emphasized using an update
Lagrangian formalism ( see Cleja-Ţigoiu [25], or a principle of the virtual power, see Teodosiu et al. [9].

First we derive the rate quasistatic boundary value problem associated with a generic stage of the pro-
cess, following Cleja-Ţigoiu and Matei [25]. We use the relative description of the motion χ, given by
Truesdell and Noll [26].

The nominal stress (i.e. the first Piola-Kirchhoff stress tensor) with respect to the configuration at time
t is given by

St (x, τ) = (detFt(x, τ)) T (y, τ) (Ft (x, τ))−T , detFt(x, τ) =
ρ̂(x, t)

ρ̂(y, τ)
. (14)



Proposition.1. The nominal stress satisfies, at moment t, the following relations

St (x, t) = T (x, t) and

Ṡt (x, t) = ρ̂ (x, t)
d

dt

(
T (x, t)

ρ̂ (x, t)

)
−T (x, t) LT (x, t) .

(15)

2. The Piola - Kirchhoff (nominal stress) St satisfies the balance equation with respect to the configura-
tion at time t taken as reference configuration

divxSt (x, τ) + ρ̂ (x, τ) bt (x, τ) = 0, with bt (x, τ) = b (χt (x, τ) , τ) . (16)

The body is identified with Ω ⊂ R3 and the appropriate boundary conditions are associated on the
boundary ∂Ωt of the current domain Ωt = χ(Ω, t).

Now we emphasize an explicit representation of the variational equation associated with the rate form
of the equilibrium equation at a current moment of time, (16) together with (22) in terms of the velocity
in the actual configuration.

Theorem. If the activation condition is formulated, the rate type boundary value problem at time t leads
to an appropriate variational equality to be satisfied by the velocity field, v, when the current state of the
body, namely the Cauchy stress, T, the position of the slip systems, (mα, sα), the dislocation densities,
ρα, the mass density ρ̂, and the hardening variables, ζα, are known. The variational equality is given by∫

Ωt

(∇v)T · ∇wd V +

∫
Ωt

ρ̂E [D] · ∇wd V−

−
N∑
α=1

∫
Ωt

να{ρ̂E
[
{sα ⊗mα}S

]
+ (sα ⊗mα) T + T (sα ⊗mα)T } · ∇wd V =

=

∫
Γ1t

ṡt ·wda+

∫
Ωt

ρḃt ·wd V, ∀w ∈ Vad,

(17)

with

να = J να0

∣∣∣∣ 1

ζα
(Tmα · sα − ταb )

∣∣∣∣n sign (Tmα · sα − ταb )H (Fα) , α = 1, . . . , N (18)

A novel algorithm to describe the behaviour of the elasto-plastic body, at a generic time t is proposed :
We apply the variational equality (17), (18) together with the differential equations which allow us to
update the state of the material, to the sheet in a plane stress state.

A finite element method (FEM) is applied for solving the variational problem (17) to define the velocity
field in the actual configuration, v;

If the velocity field is known the solution of the differential system (which defines the rate type of the
constitutive equations) and of the non-local evolution equation for the dislocation density (if this is the
case) are solved to update the current sktate. We use Euler method and also Crank-Nicolson’s method
for non-local evolution equation.



3 Crystalline elasto-plasticmaterials withmicrostructural defects
Three configurations are considered in the paper :
– k be a fixed reference configuration of the body B, i.e. a diffeomorphism, k(B) ⊂ E , and B will be

identified with k(B);

– χ(·, t) the deformed configuration at time t, for any motion of the body B, χ : B ×R −→ E,

– there exists K, a time dependent anholonomic configuration (so-called configuration with torsion),

defined by the pair (Fp,
(p)

Γ ), Fp− plastic distortion and
(p)

Γ − plastic connection.
The plastic distorsion, Fp, is an invertible second order tensor field and the plastic connection with

torsion,
(p)

Γ k, is a (1,2) third order tensor field attached to the configuration κ.The reference configuration
k has not been mentioned anymore.

3.1 Connection with torsion, contorsion
In this section we introduce the definition, properties and axioms, concerning the connection with metric
property with respect to a given metric, which is characterized by a positive and symmetric tensorial
field defined on the body B, starting from the results previously mentioned.

Definition.The so-called motion connection Γ is a compatible connection attached to the tensorial field
F = ∇χ, i.e. deformation gradient, as

Γ = F−1(∇ F). (19)

Let Γ be a connection and C a metric tensor, i.e. a symmetric and positive definite second order tensor.

Definition. The connection Γ has the metric property relative to the metric tensor, C, or it is C−
metric, if the following equality holds

(∇ C)u = (Γu)TC + C(Γu), (20)

for any constant vector u.

Remark. The precise meaning of (20) is given by the statement : the covariant derivative of the metric
tensor C relative to the affine connection Γ is vanishing. The notation will be∇ΓC = 0.

Definition. The torsion S of the connection Γ is defined by

(Su)v = (Γu)v − (Γv)u, (21)

written for u,v ∈ V.

We recall here Schouten’s result [11] :

Theorem. The connection Γ, which is compatible with the metric tensor C, is expressed in terms of
Levi-Civita connection and contorsion W under the form

Γ = γ + W, (22)

where



1. γ is Levi-Civita connection corresponding to the metric tensor C and is defined by the formula

(γu)v ·w =
1

2
C−1w · [((∇ C)v)u + ((∇ C)u)v]− 1

2
∇C((C−1)w)u · v, (23)

2. The contortion W and the torsion S, third order fields, determine each other by

(Wu)v =
1

2
(Su)v − 1

2
C−1[(C(Sv))Tu + (C(Su))Tv],

(Su)v = (Wu)v − (Wv)u.
(24)

3. The following skew-symmetries hold

(Su)v = −(Sv)u,

(W̄u)T = −(W̄u), where W̄ = CW,

(25)

∀ u,v ∈ V, as a consequence of the definition of the torsion S, (21).

Let us give the component representations of the tensorial fields defined above in {xi}{i=1,2,3}− a cur-
vilinear coordinate system.

The following tensorial representations in local basis {ep}p=1,2,3, and in the reciprocal basis {ep}p=1,2,3,

respectively, follow

γ ≡ γpkmep ⊗ ek ⊗ em, γpkm =
1

2
Cpl(

∂Clm
∂xk

+
∂Ckl
∂xm

− ∂Ckm
∂xl

),

C−1 = Cplep ⊗ el, C = Cple
p ⊗ el, and CplClm = δpm,

(∇C)v =
∂Csk
∂xk

vles ⊗ ek, where ep · em = δpm,

Γ = Γkijek ⊗ ei ⊗ ej , ((Γu)v)w = Γkijwku
jvi,

Γkνµ = γkνµ +W k
νµ,

W k
lm =

1

2
[Sklm − Cks(CmnSnsl + ClnS

n
sm],

(26)

γpkm− second order Christoffel- Riemann symbols,W k
νµ− contorsion components.

3.2 Teodosiu’s elastic type models with dislocations
Elastic boundary value problems for defective bodies have several formulations, motivated by the adop-
ted definitions for defects. The historical references to the elastic mathematical theory of dislocations
and disclinations can be found for instance in Teodosiu [27]. Teodosiu formulated and solved boundary
value problems for "Elastic models of crystalline defects" within small strain linear elasticity. Elastic
problems for defects characterized by Volterra process have been solved by Teodosiu [27], as for
instance the elastic model of the edge and screw dislocations in a hollow cylinder. In these problems the
given discontinuity of the displacement field along the cut surface S characterizes the Burgers vector.

Teodosiu published "Contributions to continuum theory of dislocations and initial stresses, I-III," (1967),



Rev. Roum. Sci. Tech. [15], [16] and [17]. Herein a theory of materials with initial stresses and hyper-
stresses induced by dislocations is developed. The considered second grade hyperelastic materials with
strain energy dependent on the non-compatible elastic distortion and its covariant derivative generalizes
the theory developed by Toupin [28]. The quasi-dislocations (described by the torsion tensor associated
with a metric connection) are the only sources of the initial stresses and hyperstresses.

We refer now to Teodosiu’s concepts, which deals with natural state geometry. The vanishing initial
stresses is assumed to be performed by "tearing of the continuum body" into small elements and by "re-
laxing them individually." Here a primary concept which further leads to isoclinic relaxed configuration
seems to appear. These torn relaxed elements are considered as imbedded in a metric space with linear
connection. Teodosiu points out that the natural state is a metric space with a linear connection with me-
tric property. A local homeomorphism between the natural state and the reference state is introduced, say
A in Teodosiu’s notation. The linear connection Γ is defined by the formula (19), written for A, which
is not a gradient (i.e. an anholonomic tensorial filed). Thus Γ is metric with respect to C = ATA, and
Riemann curvature tensor associated with the connection is vanishing.

Generalizing the theory developed by Toupin [28] it is assumed that the stored energy density depends
on the the distortion A and on the specific "covariant" derivative ∇γA, which is reformulated by us,
under the form

φ = φ(A,W) (27)

where W is the contorsion tensor associated with the connection via Shouten’s result.

Comments :

- the variational principle postulated by Toupin is adapted to the considered framework and the stress and
hyperstress tensors are derived from the potential defined by the stored energy density, and the balance
equations for second grade theory follow, see [15] ;

- the surface gradients of the hypersress enter the boundary conditions ;

- following Kröner’s procedure, Teodosiu formulated a generalized scheme for solving the linearized
boundary value problems either directly for particular known quasi-dislocation densities, or generally
by successive approximations, see [16] and [17].

3.3 Cartan-Riemann geometry of plastically deformed material
structure

In the constitutive framework of multiplicative finite elasto-plasticity with second order deformation,
developed in the papers Cleja-Ţigoiu [18], Cleja-Ţigoiu et al. [19] we introduced :

Axiom For any motion χ of the body B, at any material particle X and at any time t, there exists a pair

(Fp,
(p)

Γ ) with Fp an invertible second order tensor, called plastic distortion and
(p)

Γ k a (1,2) third order

field, the so-called called plastic connection. The pair (Fp,
(p)

Γ ) is invariant with respect to a change of
frame in the actual configuration.

Axiom For any pair (F,Γ) of the deformation gradient and motion connection attached to the reference
configuration , κ, there exists a second order pair of elastic deformation, where the elastic distorsion is



defined by

Fe = F(Fp)−1, (28)

and the elastic connection is introduced in terms of the motion and plastic connections, both of them
being related to the initial configuration, through the formula

(e)

ΓK= Fp(Γ−
(p)

Γ )[(Fp)−1, (Fp)−1]. (29)

In the other words we adopted the composition rule of the second order elastic and plastic deforma-
tions.

We assume that the plastic connection
(p)

Γ has metric property with respect to the plastic metric tensor
in the reference configuration Cp := (Fp)TFp.

Let us introduce the Bilby’s type connection

(p)

A := (Fp)−1∇Fp. (30)

Proposition. The plastic connection with metric property with respect to Cp is represented under the
form

(p)

Γ =
(p)

A +(Cp)−1(Λ× I), (31)

where the third order tensor Λ× I, generated by the second order (covariant) tensor Λ is defined by

((Λ× I)u)v = Λu× v, ∀ u,v. (32)

Λ is called the disclination tensor.

As a direct consequence of (31) and (30) we get the equivalent representation

Sp = Skw(
(p)

A ) + Skw(Cp)−1(Λ× I)), (33)

Proposition. The second order torsion tensorN p is associated with Cartan torsion and is expressed by

N p = (Fp)−1curl Fp + (Cp)−1
(
(tr Λ)I− (Λ)T

)
,

where (Spu)v = N p(u× v).

(34)

Contrary to the elastic models, in the elasto-plastic models at the initial moment we consider that certain
heterogeneous distribution of the defects exists inside the material which is considered in a natural state.
These defects become active if and only if the elastic stresses, which are determined by solving the
elastic problem, reached the appropriate critical values. The defects are characterized by a disclination
density tensor, or a dislocation density tensor, respectively. We use arrays of disclination dipoles for
modeling the grain boundaries, as they represent the misfit between the lattice orientation of the two
single crystalline materials in contact, see [19] and [20].



The basic concepts as balance equations for macro and micro stresses and stress momenta, the principle
of free energy imbalance were introduced and developed within continuum mechanics framework.

The free energy density is function of elastic strain and defects, expressed by the torsion tensor associated
with the plastic connection, the disclination tensor and its gradient. As for example we assume that the
free energy density with respect to the reference configuration is given by a quadratic function with
respect to the elastic strain and defects densities, given by

ψ =
1

4
E(C−Cp) · (C−Cp) +

1

2
β2S

p · Sp +
1

2
β3Λ ·Λ + β4

1

2
∇Λ · ∇Λ. (35)

The parameters involved in the expression of the free energy functions are the components of the elastic
stiffnessmatrix E and the constant parameters,βj , j=2,3,4. E characterizes an orthotrop elastic behaviour.

The dislocation density tensor, αK, is expressed by

αK :=
1

detFp
(curl Fp)(Fp)T , (36)

and measures the incompatibility of the plastic distortion. The Burgers vector associated with the circuit
C0 is defined in terms of the dislocation density.

The Frank vector associated with the circuit C0 is introduced in terms of the disclination tensor, Λ̃, via
the disclination density

αK = curl(
1

detFp
FpΛ) (37)

The non-local evolution equations for plastic distortion and disclination tensor were defined to be com-
patible with the principle of the free energy imbalance. The free energy imbalance formulated in K and
written for any virtual (isothermal) process under the form

(Pint)K − ψ̇K ≥ 0, (38)

see for instance Cleja-Ţigoiu [18]. Here (Pint)K denotes the internal power expended during the elasto-
plastic process and has to be postulated in an appropriate form. ψK is the expression of the free energy
function in the configuration K, related to the reference configuration through the plastic distortion.

The complete models for elasto-plastic models with defects such as dislocations, disclinations and grain
boundary, as well as the algorithms proposed to simultaneously solve the incremental equilibrium equa-
tion, coupled with partial differential equations which describe the defects evolution, can be found in
the papers by Cleja-Ţigoiu et al. [19] and [20].
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