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Résumé : 
La construction de sources synchrotron de rayons X a permis l’étude in situ et en temps réel des 

matériaux sous chargements mécaniques et/ou transformation de phase. Ces expériences produisent des 

milliers de diagrammes de diffraction 2D dont l’analyse n’est pas triviale car elles résultent de l’effet 

conjugué des défauts microstructuraux, des contraintes internes et des chargements mécaniques. La 

modélisation numérique des diagrammes de diffraction est donc nécessaire. Elle consiste à évaluer les 

champs mécaniques (champs de déformations ou de déplacements) dans un matériau et à générer les 

diagrammes théoriques correspondant à cet état de contraintes. La précision de cette modélisation est 

liée à celle de la méthode numérique utilisée pour calculer les champs mécaniques.  Pour simuler les 

diagrammes théoriques, nous utilisons une méthode micromécanique basée sur l’algorithme FFT pour 

calculer le champ de déplacements dans un matériau de structure périodique. Pour améliorer la 

précision de cette méthode, nous introduisons un opérateur de Green discret et une méthode de sous-

voxélisation pour la suppression des oscillations numériques et des artéfacts numériques. Nous 

montrons l’effet de ces défauts numériques sur les diagrammes de diffraction et appliquons le modèle 

pour étudier des cas de référence comme des boucles de dislocations parfaites et partielles, ou encore 

une répartition aléatoire de boucles de dislocations. 

Abstract: 
Synchrotron X-ray now allows to study in situ and in real time the mechanical behavior of materials 

under loading and/or phase transformation. Such experiments result in thousands 2D diffraction 

patterns. However, the analysis of these images is not an easy task because they are sensitive to 

microstructural defects, internal stresses and applied load. An alternative method to complete this study 

is the forward modeling of the diffraction patterns. In this numerical method, we first need to compute 

the mechanical fields (strain or displacement fields) in a deformed material. The computed field is then 

used to generate theoretical X-ray diffraction peaks, which are compared to experimental results. The 

quality of the forward modeling method strongly depends on the accuracy of the numerical method used 

to compute the mechanical fields. In the present paper, a micromechanical method based on the FFT 

algorithm is used to compute the displacement field. To improve this spectral method, we develop a 

discrete Green operator to suppress numerical oscillations and a sub-voxelization method to remove 

artifacts on the displacement field. Throughout numerical examples, we show the effect of these 

numerical defects on the simulated peaks and finally our numerical model is used to study some 

reference cases such as perfect or faulted dislocation loops, or a random distribution of dislocation 

loops. 

 

Mots clefs : Transformée de Fourier rapide, Opérateur de Green, sous-

voxélisation, simulation de pics de diffraction. 
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1 Introduction  
Since the advent of powerful synchrotron X-Ray sources and fast 2D X-Ray detectors, in situ 

experiments on materials during phase transformations or mechanical testing [1–5]  result in terabytes 

of data (i.e. tens of thousands of images). These data need to be processed in order to retrieve useful 

information on the material’s state. However, while the relation between the variations of diffraction 

peaks positions (the 2θB Bragg angle) can be related to variations in average strain, the effect of the 

microstructure (size of the diffraction volumes, defect content… ) on the peaks shapes (width, slope…) 

is less obvious and can be known only in simple cases [6–8]. An alternate possibility called forward 

modeling is to compute the elastic fields (strain, displacement) expected from a representative volume 

of material with a given microstructure and stress state, then to generate theoretical diffraction peaks 

and compare those with experimental ones [9–14]. As several material parameters (defect density, 

phases and stress distribution…) need to be considered and a real microstructure may be quite complex, 

this is a computer intensive technique, and its practicability depends on the accuracy and the efficiency 

of the numerical method used to compute the mechanical field.  

Numerical methods based on Fast Fourier Transform (FFT) are increasingly used to compute 

mechanical fields in a material with a periodic and voxelized microstructure [15–19]. These spectral 

methods have many advantages: they are easy to implement, they have a good accuracy and the 

computational time is low compared to the Finite Element Method (FEM) for a same number of degrees 

of freedom. They were introduced by Moulinec and Suquet [15,16] to compute the effective mechanical 

behavior of linear elastic composites and are currently used for many mechanical problems. However, 

the computed elastic fields exhibit numerical oscillations close to discontinuities such as phase 

boundaries or dislocation loops [15,20]. As seen below, such oscillations result in phantom peaks in the 

simulated diffracted intensity, which may mask real physical effects. 

These oscillations have three sources: the classical Gibbs phenomenon, aliasing and microstructure 

voxelization. Unfortunately, they cannot be smoothed out by simple techniques such as the use of low 

pass filters, as these would add other phantom peaks. 

In the present paper, we show that unwanted oscillations can be removed by using both a modified 

discrete Green operator in the computation of the elastic fields and a “sub-voxelization” method to 

remove the voxelization effect [20,21]. We then show the effect of these corrections on the computed 

diffraction intensities for a f.c.c. material containing a single perfect or faulted dislocation loop.  

 

2 FFT modeling of diffraction peaks 
Under kinematical conditions and assuming a coherent beam, the amplitude of a diffracted wave at a 

position    � + �   in the vicinity of a reciprocal � lattice vector is [9,10,22–24] :  

 

             ���� = �	
����� × ���, �� × ��� �−2�� � ∙ ������              (1) 

 

where � is the position of the scattering atom, ����� is the amplitude of the incident electromagnetic 

wave, ���, �� is the local structure factor and ���� the displacement field.  The scattered intensity is 

����= |����|�.  

 

In order to compute the displacement field, we take the material as a periodic repetition of a cubic 

Representative Volume Element divided in n3 voxels (we usually take n =512.). In this paper, for 

simplicity we assume linear homogeneous elasticity with an eigenstrain field  �∗and a homogeneous 

linear elastic stiffness tensor  �. Using the Green’s function technique, the displacement field due to 

eigenstrains is given at every position by (see e.g. [25]):  
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���� = �! + "# ∗  $: �∗&���                     (2) 

�! is an imposed displacement field (which is not considered in the paper), the symbol ∗ denotes the 

spatial convolution product and  # is the third order Green operator associated with periodic boundary 

conditions. The first term will define the average diffraction peak position and the second the distribution 

of the scattered intensity around this position.  In Fourier space this equation becomes: 

 

'(�)� =  #*�)�: +$: ,∗* �)�                               (3) 

 

The Fourier transform  #*   of  #  is given as function of the Fourier transform of the elastic Green function 

�*  by [25]: 

-./01�2� = /
� "3./041 + 3./140&                     (4) 

 

The eigenstrain tensor ,∗ can be due to local variations of the lattice parameter (different phases or an 

uneven distribution of impurities) and to crystal defects such as dislocations loops. In this paper, we 

focus on the latter as they involve displacement discontinuities.  A dislocation loop is voxelized as a 

planar, one voxel thick, transformed platelet surrounded by the dislocation. The eigenstrain is 

homogeneous within the voxel volume, which must be much larger than the lattice cell volume. The 

eigenstrain tensor of the transformed voxels is given by [26,27]:  

 

5/0∗ = 6
�7 "8/90 + 809/&                              (5) 

 

where "86,8�, 8:&  are the Miller indices of the plane which has slipped by a relative amount ;�96,9�, 9:� 

and < is the voxel size. 

 

3 Improvement of the displacement field computation 

3.1 Discrete Green operator for displacement field 

 
Let us consider a rectangular dislocation loop perpendicular to the z-axis with a Burgers vector ;�0, 0,
9:� in a homogeneous isotropic material  ( Young’s modulus  > = 333.4 3BC and the Poisson ratio D =
0.26.).  This approximately corresponds to the room temperature elastic constants of a single crystalline 

Ni-based Superalloy. The dislocation loop is a square-shaped inclusion with an eigenstrain tensor 

defined as: �/0∗ = 0  except  �::∗ = 1.    The unit cell is discretized in 128 × 128 × 128 voxels and the 

platelet inclusion size for the dislocation is 32 × 32 × 1.  Figure 1 (left) shows the displacement fields 

along z-axis due to this dislocation loop.  

Some oscillations appear close to the dislocation loop. These numerical oscillations can be related to the 

aliasing phenomenon. Numerical examples show that these numerical oscillations are due to the classical 

Green operator used in the initial method [15,16]. To correct these numerical oscillations, we develop a 

new expression #* H of the Fourier transform of the Green’s operator using an efficient discretization of 

the real space [20]:  

#* H"4/01& = �/01 I �−1�JKLKM

�NO + ��
1

�8O + P�
1

��O + Q� #*�4JRK/,LRK0,MRK1�
KS

J,L,MTUS
          �6�   

 

                                                 With           �/01 = VR
WX: Y�8 V/W

R X Y�8 V0W
R X Y�8 V1W

R X 
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The discrete #* H"4/01& operator used to compute the displacement field as well as the discrete Z. H"4/01& 

operator [20] used to compute the strain field have nearly the same form as the discrete Z. H"4/01&’ operator 

reported by Brisard and Dormieux [28]. They are both modulated by Sinc functions but in [28] the Sinc 

functions are squared because these authors used the Hashin-Shtrikmann variational principle, which is 

different from our integral formulation. 

 

Figure 1 (right) shows the displacement field computed using the proposed discrete Green operator (for 

N = 8 = � ∈ 
−21,20�. The numerical oscillations are removed.  

 

 

 
 
Figure1 Displacement field due to a rectangular dislocation loop. On the left, the displacement field is computed 

using the classical Green operator and on the right side, the displacement field is computed using the proposed 

discrete Green operator. The oscillations are suppressed. The center point was also shifted by 9 2⁄ . 

 

3.2 Sub-voxelization 
Let us now consider a hexagonal dislocation loop with a Burgers vector ; = ]

� 
01̂1� lying in a �111� 

slip plane of a f.c.c. crystal. The material is discretized in 512 × 512 × 512 voxels. This hexagonal 

dislocation loop consists of two screw dislocation segments and six 60° dislocation segments. Figure 

(2a) shows the displacement field along a line in the z direction crossing the dislocation loop. The 

displacement is zero in the voxel ri belonging to the dislocation loop (it should be ± a
�.), and oscillates 

in the neighboring voxels … ri-3, ri-2, ri-1, ri+1, ri+2, ri+3…. These damped oscillations obviously result from 

the voxelization of the dislocation loop plane (figure (2c)), and would disappear at these points for a 

finer discretization �512 × m�: (figure (2d)). We can thus define a “patch” ∆1"rP − r�& which is the 

difference between the k component of the displacement computed with a �512 × m�: grid and the 

initial 512: grid: 

 

∆1"rP − r�& = e1fga"rP − r�& − e1/L/h"rP − r�&                     (7) 
 

The computation method for ∆1 is detailed in Eloh et al. [21]. The correction is finite for voxels in the 

neighborhood of r0 and negligible at far distances. The total correction is then the convolution of ∆1 

(including a  
a
� shift) and the voxelated eigenstrain field. The result is shown in figure (2b): the 

displacement field exhibits a jump of size 9 = C 2⁄  at the dislocation loop plane. It is now continuous 

modulo a crystal lattice vector, and the phase shift � ∙ ∆���� (equation (1)) is an integer number. 
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Figure 2 :  (a) Displacement field due to a hexagonal dislocation loop showing artifacts close to the dislocation 

loop. These artifacts result from the voxelisation of the dislocation loop represented in (c). Mimicking a finer 

voxelisation (d), we computed a patch ∆1 which supresses these artifacts. The corrected displacement field is 

represented in (b). 

 

4 Numerical simulations: perfect and faulted dislocation 

loops 

4.1 Perfect hexagonal dislocation loop 
In order to test the result of the above corrections, we compute the intensity of the (200) diffraction 

peak of a representative volume (size: 1μN: divided into 512: voxels) containing a single 

dislocation loop with a 9 = ]
� 
1̂10� Burgers vector lying in a �111� slip plane shown in figure 3. 

Each segment is  36√2 512⁄ μN long. The corresponding dislocation density is ~6 × 1066NU�. 
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Figure 3: Hexagonal loop (i.e. transformed platelet) lying in a (111) plane of a f.c.c. crystal used for diffraction 

peaks simulation. 

 

The 3D distribution of the diffracted intensity is reported on Figure 4 with an arbitrary logarithmic scale 

in the �01̂1� (a) and �111� (b) planes containing the (256,256,256) voxel with maximum intensity (about 

1016). The total scattered intensity scales as 5126. Line 0, 1, and 2 respectively show the peak computed 

with the classical operator, the present discrete operator (eq. (6)), and after the patch correction (eq. (7) 

and Fig. 2(b)). 

All three peaks share common features: an asymmetric high intensity zone surrounding the central voxel, 

and low intensity streaks along the 
111� direction (0a, 1a, 2a) and the 
21̂1̂�, 
1̂21̂�, and 
1̂1̂2� 
directions (0b, 1b, 2b): each dislocation segment along a 〈110〉 direction in the loop plane generates a 

linear highly distorted zones,  and the corresponding (Fourier transformed) scattered intensity is 

distributed in the orthogonal n110o plane which intersects the �01̂1� plane along 
111� and the �111� 

plane along a  〈211〉 direction. The scattered intensity exhibits oscillations parallel (a) or perpendicular 

(b) to the streaks.  Simulations with different loop sizes (not represented here) showed that the period of 

these oscillations varies as the inverse of the loop size.  

A salient feature of figures 4(C�) and 4(C6) is a strong streak in direction 
111� surrounded by 

oscillations. In figure 4(C�), its intensity is increasing with increasing distance from the center with a 

maximum in the vicinity of voxel (512,512,512). The intensity is lower and slowly decreasing in figure 

4(C6). On the contrary, the intensity is strongly decreasing in figure 4( C�). Two phantom peaks are also 

visible in figures 4(9�) and 4(96). The authors believe these features are due to a parasitic scattered 

amplitude resulting from a surface “defect” i.e. fast oscillations of the displacement field in the loop 

plane and its immediate vicinity: these are oscillations resulting from the classical Green operator and 

from the voxelization and the point at position r/.  
 

4.2 Faulted hexagonal dislocation loop 
Figure 5 shows the corrected displacement field (Figure 5(a)) and the (200) diffracted intensities (figures 

5(b) and 5(c)) for a single loop having the same geometry as figure 3, but with ; = ]
p 
2̂11� which 

corresponds to a stacking fault in the loop plane. The displacement field is nearly the same as in figure 

2b with a 2/3 scale factor. As a result, the displacement shift in direction x at the loop plane is no longer 

a crystal lattice translation vector, the G.b scalar product is 2/3, and there is a step in the phase. The 

Fourier transform of the faulted surface is a line along the 
111� direction, and as the Fourier transform 

of a Heaviside step function is q-1, we may expect a streak along 
111� with an intensity varying as q-2. 

This is indeed observed in figure 5(b). 
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Figure 4: 2D plots of the diffracted intensities for a single hexagonal dislocation loop deduced from the 

displacement field computed with the classical operator (0), the discrete operator (1), and after correction (2). 

The intensities are plotted in the �01̂1� plane (Figs. a0, a1, a2) and the �111� plane ( Figs. b0, b1, b2).  
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Figure 5: 1 D plot of the corrected displacement field of a faulted dislocation loop (a), and 2D plots of the 

diffracted intensity. The intensities are plotted in the �01̂1� plane (b) and the �111� plane (c).  

 

4.3 1D profiles  

 
The 3D intensity is now summed in the planes perpendicular to the G vector. This allows the study of 

3D data on 1D profiles. Figure 6(a) shows 1D profiles of the intensity in the case of single dislocation 

loop for which the displacement field is computed with the different methods discussed above. 

The peak shape near the top of the peaks is the same in all cases (except a bump on the left side for the 

profile computed with the classical Green operator). Their long-range behavior is however quite 

different. When the displacement field has been calculated with the usual truncated operator (black line), 

a phantom peak is observed which is due to the short period oscillations near the displacement field 

discontinuity (Figure 1a). The behavior of the peak calculated with the modified Green operator (blue 

curve) is only slightly better. When the intensity has been calculated with the sub voxel patch (red curve) 

the long-range intensity follows the expected intensity law �~uU: [29,30]. 

We now consider 64 hexagonal dislocation loops with the same (111) plane and Burgers vector 

distributed at random positions in the unit cell. The dislocation density is ~3.8 × 106: NU�.  Figure 
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6(b) compares the 1D profiles computed for both configurations (single dislocation loop and randomly 

distributed dislocation loop).  A decrease of the maximum intensity and a broadening of the top of the 

peak are observed in the second configuration. However, the tails of the peak still follow the �~uU: law 

and their intensity has been multiplied by 64: the tail intensity is proportional to the dislocation density.    
Figure 6(c) compares the 1D profiles due to a perfect (red) and faulted (green) hexagonal dislocation 

loop. The top of the profile is thinner for the faulted loop (factor: 2/3), but the main difference is visible 

at the tail which follows a �~uU� law. It may be remarked that, as in f.c.c. metals perfect dislocations 

are split into two partial dislocations (Shockley partials) linked by a stacking fault, this uU� tail should 

also be visible, but with a very low intensity. 

 

 

   

                                           
 

 

Figure 6: 1D peak profiles computed for one dislocation loop using the different methods described in paragraph 

3 (a), for a single dislocation loop and a random distribution of identical dislocation loops (b), a single perfect 

and faulted dislocation loop (c). 

 

5 Concluding remarks 

 
As seen above using an FFT-based micromechanical method is a very efficient way to compute the 

displacement field within a voxelized representative volume of a material containing a single defect or 

a large number of defects, then to model the distribution of intensities near a G-vector defined in the 

reciprocal lattice. However, this method has well-known drawbacks, such as the Gibbs phenomenon and 

q t 

+ 
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the consequences of the voxelization of the microstructure, such as dangling voxels [18]. Two 

corrections are needed: a modification of elastic Green operators [20] and a correction of the 

displacement field in the vicinity of transformed voxels [21]. The forms of the found discrete Green 

operators are different from [28]. As the modification of the operators theoretically requires a 3D sum 

on the whole reciprocal space, it may be expensive in CPU time (parallel computing is needed). 

Fortunately, it needs to be computed only once for a given set of elastic constants and then it is stored 

for further computations. The final correction of the displacement field seems to give good results for 

lattice planes with low indices within the reference frame of the representative volume, but may be 

difficult to implement for plane with high indices, which will occur in the simulation of polycrystalline 

plasticity. 

The simulated peaks exhibit the main features expected from diffraction peaks from a material 

containing dislocations: a broad and asymmetric maximum (proportional to the Burgers vector of the 

dislocation loops and depending on the number and sign of the loops), a streak perpendicular to the 

dislocation loop plane, and a symmetry which reflects the shape of the loops. After summing the 

intensities in order to obtain a 1D profile which may be compared to a simple (θ, 2θ) diagram, we have 

obtained realistic shapes with tails following the expected laws: uU: for perfect dislocations (due to the 

distribution of strain near the dislocation cores), and uU� for stacking faults. If we do not take into 

account the voxel with the highest intensity (which would anyway be smeared in real cases), the 

calculated diffracted intensities span six orders of magnitude: this is larger than the peak to background 

ratio of most experiments. 

Lastly, the present method seems to be well adapted to simulate the diffraction pattern of volume 

elements with a mesoscopic (micrometer) size, as the full width at half maximum of the peaks is a few 

tens of voxels and the background level is reached at a few hundred voxels from the maximum.  

 

References  
 

1.  Tréhorel, R.; Ribarik, G.; Schenk, T.; Jacques, A. Real time study of transients during high 

temperature creep of a Ni-based superlloy by far field high energy synchrotron X-rays diffraction.  

J. Appl. Cryst. (2018). 51, 1274-1282 https://doi.org/10.1107/S1600576718010014 

2.  Tréhorel, R. Comportement mécanique haute température du superalliage monocristallin AM1: 

Etude in-situ par une nouvelle technique de diffraction en rayonnement synchrotron, Université 

de Lorraine: Nancy, France, 2018. 

3.  Graverend, J.-B.L.; Dirand, L.; Jacques, A.; Cormier, J.; Ferry, O.; Schenk, T.; Gallerneau, F.; 

Kruch, S.; Mendez, J. In Situ Measurement of the γ/γ′ Lattice Mismatch Evolution of a Nickel-

Based Single-Crystal Superalloy During Non-isothermal Very High-Temperature Creep 

Experiments. Metall and Mat Trans A 2012, 43, 3946–3951. 

4.  Robinson, I.; Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 

2009, 8, 291–298. 

5.  Balogh, L.; Ribárik, G.; Ungár, T. Stacking faults and twin boundaries in fcc crystals determined 

by x-ray diffraction profile analysis. Journal of applied physics 2006, 100, 023512. 

6.  Ungár, T. Strain Broadening Caused by Dislocations Available online: 

https://www.scientific.net/MSF.278-281.151 (accessed on Jun 16, 2018). 

7.  Groma, I. X-ray line broadening due to an inhomogeneous dislocation distribution. Physical 

Review B 1998, 57, 7535. 

8.  Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A. Crystallite size distribution and dislocation 

structure determined by diffraction profile analysis: principles and practical application to cubic 

and hexagonal crystals. Journal of applied crystallography 2001, 34, 298–310. 

9.  Vaxelaire, N.; Proudhon, H.; Labat, S.; Kirchlechner, C.; Keckes, J.; Jacques, V.; Ravy, S.; Forest, 

S.; Thomas, O. Methodology for studying strain inhomogeneities in polycrystalline thin films 

during in situ thermal loading using coherent x-ray diffraction. New J. Phys. 2010, 12, 035018. 



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019 

 

 

10.  Jacques, A. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays 

Three-Crystal Diffractometer Peaks Simulation. Metallurgical and Materials Transactions A 

2016, 47, 5783–5797. 

11.  Miller, M.P.; Dawson, P.R. Understanding local deformation in metallic polycrystals using high 

energy X-rays and finite elements. Current Opinion in Solid State & Materials Science 2014, 5, 

286–299. 

12.  Demir, E.; Park, J.-S.; Miller, M.P.; Dawson, P.R. A computational framework for evaluating 

residual stress distributions from diffraction-based lattice strain data. Computer Methods in 

Applied Mechanics and Engineering 2013, 265, 120–135. 

13.  Hofmann, F.; Song, X.; Jun, T.-S.; Abbey, B.; Peel, M.; Daniels, J.; Honkimäki, V.; Korsunsky, 

A.M. High energy transmission micro-beam Laue synchrotron X-ray diffraction. Materials Letters 

2010, 64, 1302–1305. 

14.  Song, X.; Xie, M.; Hofmann, F.; Jun, T.S.; Connolley, T.; Reinhard, C.; Atwood, R.C.; Connor, 

L.; Drakopoulos, M.; Harding, S. Residual stresses in linear friction welding of aluminium alloys. 

Materials & Design 2013, 50, 360–369. 

15.  Moulinec, H.; Suquet, P. A numerical method for computing the overall response of nonlinear 

composites with complex microstructure. Computer Methods in Applied Mechanics and 

Engineering 1998, 157, 69–94. 

16.  Moulinec, H.; Suquet, P. Fast numerical method for computing the linear and nonlinear properties 

of composites. Comptes Rendus de l’Académie des Sciences. Série II 1994, 318, 1417–1423. 

17.  Berbenni, S.; Taupin, V.; Djaka, K.S.; Fressengeas, C. A numerical spectral approach for solving 

elasto-static field dislocation and g-disclination mechanics. International Journal of Solids and 

Structures 2014, 51, 4157–4175. 

18.  Anglin, B.S.; Lebensohn, R.A.; Rollett, A.D. Validation of a numerical method based on Fast 

Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical 

solutions. Computational Materials Science 2014, 209–217. 

19.  Lebensohn, R.A.; Rollett, A.D.; Suquet, P. Fast fourier transform-based modeling for the 

determination of micromechanical fields in polycrystals. JOM 2011, 63, 13–18. 

20.  Eloh, K.S.; Jacques, A.; Berbenni, S. Development of a new consistent discrete Green operator for 

FFT-based methods to solve heterogeneous problems with eigenstrain. International Journal of 

Plasticity 2019, 116, 1-23. 

21.  Eloh, K.S.; Jacques, A.; Ribarik, G.; Berbenni, S. The Effect of Crystal Defects on 3D High-

Resolution Diffraction Peaks: A FFT-Based Method. Materials 2018, 11, No. 1669. 

22.  Vartanyants, I.A.; Yefanov, O.M. Coherent X-ray Diffraction Imaging of Nanostructures. 

arXiv:1304.5335 [cond-mat] 2013. 

23.  Takagi, S. A Dynamical Theory of Diffraction for a Distorted Crystal. Journal of the Physical 

Society of Japan 1969, 26, 1239–1253. 

24.  Takagi, S.; IUCr Dynamical theory of diffraction applicable to crystals with any kind of small 

distortion Available online: https://scripts.iucr.org/cgi-bin/paper?a03704 (accessed on Jun 19, 

2018). 

25.  Mura, T. Micromechanics of Defects in Solids; Mechanics of Elastic and Inelastic Solids; 2nd ed.; 

Springer Netherlands, 1987; ISBN 978-90-247-3256-2. 

26.  Li, Q.; Anderson, P.M. A Compact Solution for the Stress Field from a Cuboidal Region with a 

Uniform Transformation Strain. Journal of Elasticity 2001, 64, 237–245. 

27.  Anderson: Crystal-based plasticity - Google Scholar Available online: 

https://scholar.google.com/scholar_lookup?title=Crystal-

based+plasticity&author=P.+M.+Anderson&publication_year=1995 (accessed on Sep 5, 2018). 

28.  Brisard, S.; Dormieux, D. FFT-based methods for the mechanics of composites: A general 

variational framework. Computational Materials Science 2010, 49, 663–671. 

29.  Krivoglaz, M.A. Theory of X-Ray and Thermal Neutron Scattering by Real Crystals; Springer US, 

1969; ISBN 978-1-4899-5584-5. 

30.  Ungár, T. Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia 

2004, 51, 777–781. 

 


