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Abstract
In this paper, we focus on the motion of the interface between two fluids in contact with a solid surface
so called the moving contact line problem. Although the Navier-Stokes equations are applicable for fluid
flows at micro-scale, the moving interface evolution and surface tension occur at the level of molecules
at which the classical mechanics break down. Qian et al. [1] proposed the Generalized Navier Boundary
Condition (GNBC) on the basis of molecular dynamics simulation. The GNBC model can eliminate the
non-physical singularity in the vicinity of the contact line. Moreover, it can accurately predict the slip
condition with small capillary numbers.

We combine GNBC with a macro-micro scale dynamic contact line approach based on Y. Yamamoto et
al. [2]. The relation between the macro-micro contact angle is modelized thanks to Cox theory [3]. The
evolving and deforming interface is carried within the front tracking framework by J. Glimm et al. [4]
and the Navier-Stokes equations are solved by Notus CFD [5] developed at I2M. We show numerical
simulation result of capillary rise in tubes that are consistent with theory and experiment. Simulation of
a spreading droplet on a surface is also presented and discussed.

Keywords : Moving contact line, generalized Navier boundary condition,
front-tracking method, capillary rise, spreading drop.

1 Introduction
The wetting behaviour of liquids on solid surfaces plays an important role in our capacity to understand
and validate many multiphase flow phenomena in nature and industry. Examples include insects walking
on water and droplet spreading on a leaf. Wetting phenomena are important in technological processes
such as ink-jet printing, coating, biological flows, and micro-fluids. The contact line is the intersection
between the fluid-fluid interface and a solid wall. In wetting phenomena, the dynamics of the contact
line plays an important role. The main purpose of this work is to simulate the dynamic contact line for
the capillary rise in tubes and spreading droplets on a solid surface.

In contrast to the well-known Young’s relation that representing the static contact line, a theoretical and
practical description the dynamic contact line is still an open problem. The difficulty is the inherent
multiscale nature of the phenomenon : nanoscale dynamic plays a role on the contact line behavior,
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whereas macroscale fluid motion can be described by continuum mechanics. Various models have been
proposed to solve this problem such as slip models, lubrication approximations, diffuse interface models,
kinetic theory models, and molecular dynamics simulations. There are many reviews on the topic, which
gives a more detailed account of the theoretical approaches as well as the vast literature on the subject,
see e.g. de Gennes (1985) [6], Bonn et al. (2009)[7] and Snoeije (2013) [8].

We implement a numerical simulation in two dimensions axisymmetric coordinate for two-phase flows
of incompressible viscous fluids, including dynamic contact line from microscopic versus macroscopic
in a front tracking framework. Thus, we follow a method proposed by Y. Yamamoto et al. [2] which
formulated GNBCwith themacro-microscopic dynamic contact line by the Coxmodel. Themain idea of
this approach is to consider the nondimensional slip parameter, which can be linked to the slip condition
with the experimental data. The results show a dynamic wetting which compares well to experiments
when the Capillary number is small (Ca < 0.1).

Briefly, this paper is structured as follows : the model and the numerical method are discussed in section
two and three. Then section four is devoted to the numerical result of capillary rise in tubes and spreading
droplet on a surface. Conclusions and future perspectives are drawn in the last section

2 Dynamic contact line model
There are both shreds of evidence from theory analysis, known as the Huh-Scriven’s paradox and mi-
croscale observations that there exists slip at the two fluids - solid contact line. A common method to
regularize this singularity is to establish the slip region wherein the macroscopic equations are still sol-
ved while the microscopic effects of the interface can be modified more precisely. Among models in the
literature, the Navier slip is widely used. The notion of a Navier slip boundary condition is that the slip
velocity is proportional to the shear rate experienced by the fluid on the wall,

β′uslip =
∂u

∂n

∣∣∣∣
wall

(1)

where ∂u/∂n|wall is the shear strain rate at the wall and β′ is called the slip length. The value of the slip
length depends on the characteristic of the system, such as viscosity and surface roughness. The Navier
slip condition is a well-established model to regularize the viscous stress divergence but using it at the
contact line is still questionable.

Qian et al. [1] proposed the GNBC frommolecular dynamics simulations on immiscible fluid-fluid flows
for the diffused interface method. In the GNBC, the amount of slip between the fluids and the solid wall
at the contact line is proportional to the sum of tangential viscous stress and the uncompensated Young
stress. It relates to the dynamics of the moving contact line at the microscale, as

βuslip = τviscwall + τ̃Y oung. (2)

where β is the slip coefficient defined by the energy scale and the range of molecular interaction. The
GNBC model can overcome the singularity at the vicinity of the contact line and accurately predicts the
slip velocity with many numerical models such as the front tracking method, the immersed boundary-
type simulation and the arbitrary Lagrangian-Eulerian framework.
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Figure 1 – Dynamic contact line in a capillary tube.

In this work, we based on Y. Yamamoto et al. ’s approach to modify the GNBC within a front tracking
framework. The slip velocity is large at the contact line and the viscous stress is negligible compared
to the uncompensated Young stress. The interface is diffused in the parallel direction to the wall, the
unbalanced Young’s stress is given by the integral∫

int
τ̃Y oung = σ(cos θs − cos θd) (3)

where σ is the surface tension coefficient, θs and θd are the microscopic static and the microscopic
dynamic contact angle, respectively. The unbalanced Young’s stress is discretized at the jth grid point
yj near contact line as

τ̃Y oung(yj) = σ(cos θs − cos θd)d(yj − ycl) (4)

where ycl is the position of the contact line, and d(r) is the Dirac function proposed by Peskin, d(r) =
1

4∆

(
1 + cos

πr

2∆

)
if |r| 6 2∆,

0 if |r| > 2∆,
and ∆ is the uniform grid spacing. Notice that the amount of slip

relates to the deviation of the instantaneous dynamic contact angle is at a microscopic scale as de-
monstrated by the molecular dynamics simulations. From the nondimensional contact line velocity
Ca = µuslip/σ where µ is the liquid phase viscosity, Eq. 3 with y = ycl and removing τviscwall in Eq.
2, it follows that :

Ca = χ(cos θs − cos θd), (5)

where χ = µ/(β∆) is the nondimensional slip parameter that represents the dynamic property of wet-
ting. In reasonable 3D simulations, the dynamic contact angle, however, can be only measured at the
macroscopic scale which is the scale of the grid on which the Navier-Stokes equations are solved. The
passage from themacro to themicro scale is solved thanks to the relation between themacro-microscopic
angle (as in Fig. 1) by Cox-Voinov model :

(θmacrod )3 = (θd)
3 + 9Ca ln

(
lmacro

lmicro

)
+O(Ca), (6)
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Then θmacrod can be estimated from the grid-scale angle θgridd based on the front tracking representaion
with lmacro = ∆,

(θmicrod )3 = (θgridd )3 − 9Ca ln

(
∆

lmicro

)
. (7)

Our procedure at a time level consists of the following steps : first, the interface is advected by Peskin
weighted interpolation of the velocity fields. The phase volume and the grid-scale dynamic contact angle
θgridd are calculated by the marker positions. Then, the densities and viscosities on the grid points are
computed through phase volume fraction. The interfacial tension force on the grid points is approxima-
ted by Continuum Surface Force model. The microscopic dynamic contact angle and nondimensional
contact line velocity Ca are solved from Eq. 7 and 5 by using Newton’s iteration method. Finally, the
Navier-Stokes and continuity equations are solved with the slip boundary condition.

3 Numerical method
The numerical computations presented herein were performed on an axisymmetric cylindrical coordi-
nate system (x, y) where x and y are respectively the radial (horizontal) and the axial (vertical) direc-
tions. The governing equations for mass and momentum can be described in a one-fluid formulation as
follows :

∇ · u = 0,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
µ(∇u +∇uT )

)
+ ρg + Fσ,

(8)

where u is the velocity field, p is the pressure, g is the acceleration due to gravity and Fσ is the surface
tension force with the surface tension coefficient σ. For two immiscible fluid flows, the volume fraction
C is used to define one of the two phases, C for the liquid and 1 − C for the external fluid. Then the
other physical properties φ such as local density ρ and dynamic viscosity µ are linear function of the
phase volume fraction C according to the formula φ = Cφ1 + (1 − C)φ2. The surface tension term
is considered to be a force concentrated at the interface Fσ = σκδΓ where σ is the surface tension
coefficient, κ is the local curvature of the interface, δΓ is the Dirac distribution of the interface Γ and n
is the unit outward normal to the interface.

To track explicitly an evolving and deforming interface, we use a front tracking method in a separate
Lagrangian interface mesh by a set of connected markers. The interface is made by elements which are
linear segments in 2D. The geometric properties, the tangent, the local mean curvature and the contact
angle can be directly computed by the coordinate xk of markers. Thus , the front tracking interface can
precisely describe the phase boundary, capillary forces and contact line angle.

Cij

Ω

k
k + 1e

tk
tk+1

Figure 2 – Local force fe of element e is computed from tangent tk and tk+1 of marker k and k + 1.
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As in typical balanced force algorithms, the Continuum Surface Force approximation for the surface
tension term rewritten relative to the phase volume fraction C :

Fσ = σκ∇C. (9)

where∇C is numerically computed at the faces of the cells. To calculateC for a cell as in Fig. 2, the area
of enclosed region Ω is approximated by a polygon. We detect a vertex (xp, yp) of the polygon by the
intersection of the interface and grid lines or a grid corner. Then the volume of Ω when rotated around
y-axis is evaluated by integration.

The interface curvature field σκ is calculated following the hybrid formulation introduced by Shin et al.
[9] as :

σκ =
F′ · L
G ·G

, (10)

where the discrete numerical expression of the capillary force F′ and G onto the Eulerian grid are
expressed in the form of a sum over elements e of the interface. For example at an i+ 1/2 cell face

F′i+1/2,j =
∑
e

feDi+1/2,j(xe)|e|, (11)

Gi+1/2,j =
∑
e

neDi+1/2,j(xe)|e|. (12)

where fe is the capillary force contribution of element e and Di+1/2,j(xe) is the Dirac distribution
function approximated by

Di+1/2,j(xe) =
1

∆x∆y
d

(
xi+1/2,j − xe

∆x

)
d

(
yi+1/2,j − ye

∆y

)
(13)

The total tension force acting on a interface element e in 2D is calculated following :

fe =

∫
e
σκnds = σ(tk+1 − tk). (14)

where tk and tk+1 are the tangent vectors at markers k and k+1 shown in Fig. 2 that define the interface
element e. For the axisymmetric coordinate system, the axisymmetric interface field on Eulerian gird is
calculated by distributing the local axisymmetric curvature of the interface markers in form

κaxisi+1/2,j =
∑
k

κaxisk Di+1/2,j(xk)/
∑
k

Di+1/2,j(xk) (15)

where κaxisk = nx/xk, nx : the radial component of interface normal n as xk 6= 0 and κaxisk = κ2D
k as

xk = 0. Then the effect of circumferential component was add to Eq. 9

Fσ = σ
(
κ2D + κaxis

)
∇C, (16)

The interface markers are advected in Lagrangian grid by the following equation

dxk
dt

= vk. (17)

using the Euler method where the velocity v of marker k is given by the Peskin weighted interpolation
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of velocity field from Eulerian grid by

vk =
∑
i,j

uijDi,j(xk)∆x∆y. (18)

Once the interface has been advected, a redistribution of the markers is carried on to optimize the ho-
mogeneous distribution of points along the interface.

We used FronTier library package to track the dynamic motion of explicit interface and Notus flow
solver for our numerical simulation. Time discretization of the momentum equation is a first order Euler
scheme with an implicit formulation for the viscous term. The velocity/pressure coupling under the
incompressible flow constraint is solved with the time splitting pressure correction method of Goda.
The equations are discretized on a staggered grid by means of the finite volume method. The space
derivatives of the inertial term is discretized by a first-order upwind scheme.

4 Simulations of wetting phenomena

4.1 Capillary rise in tubes
We simulate a flow rising in a capillary tube to study the detailed behavior of the dynamic contact line.
Gas and glycerin 50 water are used for simulation. The boundary conditions, initial liquid height, and
fluids properties are the same as those in Yamamoto et al. [2]. The axisymmetric simulation geometry of
this test is a vertical rectangle with size R× 40R, where R = 0.512 (mm) is the radius of the capillary
tube. The number of grid points are set at N = 16 and N = 32 per tube radius. Then a time step of
10−6(s) is used and satisfied the capillary time step constraint. The static contact angle is 37.08◦.
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Figure 3 – Liquid column height with time.

The evolution of liquid height is shown in Fig. 3. In this case, we use the adjusted parameters (χ =

0.017, 0.01 and lmicro = 10−9 (m) to determine the micro-dynamic contact line. The height of the
liquid is nearly the same as experiment [2]. We observed that the result is not mesh dependent solution
as shown by Yamamoto et al. The Fig. 4 shows the relation between contact line velocity and dynamic
contact angle. It suggests that the micro dynamic contact angle is also linearly dependent on slip velocity.
That agrees with experimental results.
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Figure 4 – Relation between dynamic contact angle and contact line velocity

4.2 Spreading of a droplet on a solid surface
Simulation was performed for water and gas, with equilibrium contact angle 90◦. The physical parame-
ters and non-dimensional numbers for the two liquids according to Yokoi et al. [11]. The axisymmetric
domain is the square with size 5mm × 5mm. The Neumann boundary condition is set to the top and
right boundary, the symmetric boundary is set to the left and the bottom is the wall on which the GNBC
is applied. The initial droplet has radius R = 1.14 mm and impacts to the wall with initial velocity 1
m/s.
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Figure 5 – Spreading radius as a function of time.

Fig. 5 shows the spreading radius of the droplet during the impact. The number of grid points is 128×128

for the simulation and the time step is 4×10−6. The slip length is set to 10−9 (m) and the nondimensional
slip parameter is set to 0.5 based on S. Shin et al. ’s model [12]. Our result reproduced the first advancing
phase of contact line the same as the experiment. Then the evolution of spreading radius during the rece-
ding flow is also close (but a bit slower) to the experiment up to a time equal to 10ms. The equilibrium
state between 12ms to 18ms is not well reproduced and some discrepancies appear further. There may
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be several causes that are under consideration. First of all, a simulation with a finer mesh should be run
to confirm - or not - the observed behavior. In the article of Shin et al. [12], a mesh of 256 × 256 is
used, but also a different modelisation of the contact angle that relies upon advancing/receding contact
angle to fit better to the experiment. The proposed work is a first attempt to use for the droplet test case
the GNBC and the Cox model as defined by Yamamoto et al. One can notice that the viscous stress at
the wall is neglected, which may be discussed for the drop impact test case. Finally, the need for more
accurate numerical methods is another point on which we are working since we have noticed that the
redistribution of the markers made in the Frontier library has a strong impact on the stability of the flow.

5 Conclusion
We have presented in this work simulations of wetting phenomena based on a macro-micro approach.
For the rising flow in the capillary tube, our result is consistent with experiment and other numerical
simulation. The spreading droplet simulation only well describes the advancing phase and part of the re-
ceding phase up to the first equilibrium state. Discrepancies appear that may have several causes. Further
works are needed and will help to conclude if the proposed approach - that does not use experimental
advancing/receding macroscopic contact angle - can reproduce correctly the drop impact up to the final
equilibrium state.
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