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Résumé :
Des simulations numériques directes d’un écoulement turbulent strictement axisymétrique et station-
naire sont réalisées dans un domaine cylindrique. La méthode de forçage permet de contrôler séparément
l’injection d’énergie dans les directions toroı̈dale (azimutale) et poloı̈dale (radiale et axiale). Nous
étudions la transition d’un état sans ‘swirl’ à l’état avec, en faisant varier le rapport entre les coef-
ficients de forçage toroı̈dal et poloı̈dal Ct/Cp. Le rapport entre les composantes toroı̈dale et poloı̈dale
de l’énergie, en fonction de Ct/Cp montre la présence d’un phénomène de bifurcation. La transition
se produit lorsque le ratio de forçage est proche de 1. Nous proposons ensuite un modèle basé sur les
équations régissant les composantes toroı̈dales et poloı̈dales de l’énergie. Ce modèle montre un excel-
lent accord avec les résultats de la simulation numérique directe.

Abstract :

Direct numerical simulations of strictly axisymmetric and stationary turbulence are carried out in a
cylindrical domain. The forcing method allows to control separately the energy injection in the toroidal
(azimuthal) and poloidal (radial and axial) directions. We investigate the transition from non-swirling
to swirling states by varying the ratio between the toroidal and poloidal forcing coefficients Ct/Cp.
Plotting the swirl indicator, defined as the ratio between the toroidal and poloidal energy components,
as a function of Ct/Cp shows evidence of a bifurcation phenomenon. The transition occurs when the
forcing ratio is close to 1. We then propose a model based on the equations governing the toroidal and
poloidal energy components. This model displays an excellent agreement with the results of the direct
numerical simulation.
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1 Introduction
Recently, transitions between different turbulent states have received a considerable amount of interest.
In particular the transition between two-dimensional and three-dimensional turbulent flow has been in-
vestigated in thin fluid layers, both by experiments [1, 2] and numerical simulations [3, 4]. A review of
such turbulent transitions is given in [5].

A different transition between turbulent states is the transition between 2- and 3-component flows. A
typical example of a three dimensional-two component (3D2C) flow is strongly stratified turbulence,
where the movements are almost entirely confined to the plane perpendicular to an imposed density
gradient, but these two velocity components vary strongly in the three directions. Examples of nearly
two-dimensional three-component (2D3C) flows are fastly rotating turbulence and turbulence of a con-
ducting fluid in the presence of a strong magnetic field. These flows have three velocity components but
are almost invariant along the direction of the axis of rotation or magnetic field, respectively.

In the present investigation we will numerically study such a kind of transition in axisymmetric turbu-
lence, another example of 2D3C flow. Strictly axisymmetric turbulence, i.e. turbulence governed by the
Navier-Stokes equations modified such that the flow is invariant in the azimuthal direction, is a system
intermediate between two- and three-dimensional turbulence. Recent numerical simulations showed in
particular that this system allows for an inverse energy cascade, responsible for the generation of large
scale coherent structures, and a direct helicity cascade towards small scales [6, 7]. As predicted from
theoretical works using statistical mechanics tools [8, 9], different behaviors were obtained for swirling
and for non-swirling flows. Let us recall here that in the latter the toroidal movements are negligible with
respect to poloidal ones (see Fig. 1), while in the former the toroidal velocity is of the same order as
its poloidal components. We investigate here the transition from the non-swirling (two dimensional-two
components, 2D2C) to the swirling regime (two dimensional-three components, 2D3C), focusing on the
bifurcation between the two states.

Figure 1 – Computational box and definition of the toroidal/poloidal components of velocity.
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2 Numerical method and definitions
We begin with the incompressible axisymmetric Navier-Stokes equations written in cylindrical coordi-
nates :
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where ur, uθ and uz are the velocity components in the radial, azimuthal and axial directions respec-
tively, p is the pressure field, ρ is the fluid density and ν its kinematic viscosity, and f is a forcing
term. This forcing is such that energy is injected into the system within a certain wavenumber band.
We will hereafter distinguish the poloidal velocity field (ur, uz) from the toroidal one uθ (see Fig. 1).
The parameters Cp and Ct respectively denote the amplitudes of the forcing in the poloidal and toroidal
directions.

The system (1a-1d) is integrated numerically in a cylindrical domain by using a fully spectral method
based on an expansion of the velocity field using Chandrasekhar-Kendall helical eigenfunctions of the
curl [10]. More details on this method can be found in [6, 7].

The total kinetic energy E can be written as the sum of the poloidal and toroidal energy components,
respectively defined as :

Ep ≡ 1

2
⟨u2r + u2z⟩,

Et ≡
1

2
⟨u2θ⟩,

E = Et + Ep,

(2)

where ⟨...⟩ denotes the volume average over the cylindrical domain.

3 Numerical results
The simulations were carried out in a domain of radius R = π and of height L = 1.7π. The kinematic
viscosity was set to ν = 0.01, and the forcing parameters Cp and Ct were varied within the interval
[0.02,0.072]. These settings result in a range of large scale Reynolds number Re ≡

√
2E/3R/ν ∈

[730, 1280].

We investigate the transition from non-swirling to swirling regimes by measuring a swirl indicator γ,
defined as the ratio between the toroidal and poloidal energy components (γ = Et/Ep), as a function
of the ratio of the toroidal/poloidal forcing coefficients, Ct/Cp. The pure non-swirling case then corre-
sponds to a swirl indicator γ = 0. Our results are gathered in Fig. 2. The numerical data clearly shows
the presence of a bifurcation from the non-swirling (2D2C, 2 dimensions-2 components) to the swirling
(2D3C, 2 dimensions-3 components) regimes. The transition occurs for a forcing ratio close to 1. We
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propose in the next section a model based on the dynamical equations of the toroidal and poloidal energy
components in order to interpret this sudden change of flow regime.
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Figure 2 – Swirl indicator γ, defined as the ratio between the toroidal and poloidal energy components,
plotted as a function of the ratio between the toroidal and poloidal forcing coefficients (direct numerical
simulation data).

4 Model
Exact equations for the poloidal and energy components can be derived from the axisymmetric Navier-
Stokes equations (1a-1d). These equations formally read :

∂Ep
∂t = Tt-p + Fp − εp, (3)

∂Et
∂t = −Tt-p + Ft − εt, (4)

where Fp and Ft are the forcing contributions, εp and εt are energy dissipation rates, and Tt-p represents
the energy transfer from the toroidal component to the poloidal one :

Tt-p = ⟨
uru

2
θ

r
⟩. (5)

Our aim is to approximate each term on the right-hand sides of Eq. (3, 4). Assuming that ⟨u2r⟩ ≈ ⟨u2r +
u2z⟩/2 = Ep and using dimensional estimates based on standard turbulence modelling, one gets for the
transfer term :
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u2θur
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[
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]
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where T1 is a characteristic time scale which can be estimated as T1 = ζ R√
Ep

, where ζ is a dimensionless
coefficient.

The two forcing terms are modelled as :

Fp ∼ 2CpApEp, (7)

Ft ∼ 2CtAtEt, (8)

where Cp and Ct are dimensionless parameters of the model.
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Figure 3 – Swirl indicator γ, defined as the ratio between the toroidal and poloidal energy components,
plotted as a function of the ratio between the toroidal and poloidal forcing coefficients (direct numerical
simulation and model).

The dissipation terms are modeled as,

εp ∼ δp
U2

p
T2 ∼ δp

EpE1/2

R , (9)

εt ∼ δt
U2

t
T2 ∼ δt

EtE1/2

R , (10)

where δp and δt are dimensionless dissipation coefficients, Up = E
1/2
p and Ut = E

1/2
t are the character-

istic velocities in the poloidal and toroidal directions, and T2 = R/E1/2 is a characteristic time scale.
This model implies that the energy dissipation rates are determined by the large scales.

Overall, the system (3, 4) is therefore modelled as :
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The values of the model parameters ζ, Ap, At, δp and δt have been determined by fitting the numerical
data. The solutions of the model with these values of the parameters are compared to those obtained by
direct numerical simulation of the Navier-Stokes equations, as shown in Fig.3. Both data sets exhibit an
excellent agreement. The model reproduces in particular the bifurcation observed for Ct/Cp ≈ 1.

5 Conclusions and perspectives
We have provided evidence of a transition from non-swirling to swirling regimes of axisymmetric turbu-
lence using direct numerical simulation. Plotting the swirl indicator γ as a function of the ratio between
the toroidal and poloidal forcing coefficients, a bifurcation between the non-swirling (γ = 0) and the
swirling (γ = O(1)) regimes was clearly observed. This transition occurs for a forcing ratio close to 1.
We then proposed a model based on the dynamical equations of the toroidal and poloidal energy com-
ponents. The values of this model parameters were evaluated by fitting the DNS results. The model thus
integrated displays an excellent agreement with the results of direct numerical simulation.

The model may be extended to characterize the dynamics of three-dimensional (non-axisymmetric)
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turbulence in cylindrical coordinates, which would need the modeling of the pressure strain correlations.
Such a model could indicate how different the observed dynamics are from the behaviour of three-
dimensional turbulence.
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