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Abstract :

This work revisits data-driven approches and addresses a new paradigm in engineering sciences, the
one of hybrid approches, in which the data could enrich existing models, without neither the necessity
nor the opportunity of replacing them, while models allows enriching models in order to transform the
big-data paradigm into the smart data one, able to proceed very efficiently in the low-data limit.
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1 Introduction : Data-Driven Mechanics.
In an environment in which large scientific infrastructures produce petabytes of data every day, it was
unavoidable that computational mechanics succumbed under the tsunami of big data. Science was first
experimental (the so-called first paradigm of science), then was able, by means of models, to establish a
theoretical paradigm. In the last decades it has become heavily computational, so as to make predictions
by simulating the already established physical laws. However, very recently, the fourth paradigm of
science is that of data exploration, the one that unifies data, theory and simulation.

The word genome, when applied out of the context of biological systems, refers to a fundamental
building block toward a larger purpose. The materials genome is an initiative set forth by the White
House in USA. to face the challenge of incorporating new, designed materials to the market twice
as fast at a fraction of the nowadays cost. This initiative emphasizes the need for the design of more
advanced computational techniques able to supplement physical experiments. This will be possible
if data are shared and integrated across the “materials continuum” process of design. The materials
genome initiative highlights the need for an integrated workflow of experiments, simulation and theory
and the development of advanced simulation tools that are validated through experimental data. It also
emphasizes the need to make digital data accessible, including combining data from experiment and
computation into a searchable materials data infrastructure. This need has revealed, however, being
totally insufficient. For instance, data produced in one week by the Spallation Neutron Source in the
USA used to take one year of graduate student’s time to analyze. Now, this research installation is
producing data one hundred times faster.

Therefore, it is absolutely necessary to go substantially beyond : to develop simulation methods able to
integrate and perform data acquisition, reduction, assimilation and analysis so as to be able to seamlessly
integrate them in the design and fabrication processes of products involving radically new materials.
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Existing computational tools still posses some other fundamental limitations. One of the biggest is the
difficulty of integrating disparate time and length scales. For instance, we can model and predict the
vibration of atoms in a lattice at time scales on the order of picoseconds. But this information is not
suitable for the prediction of materials behavior across the course of the years. If a computational tools
is needed to cope with this challenge, it will need to acquire and reduce all this huge amount of data and
convert it in knowledge. Therefore, the need for model order reduction techniques is seen as a must.

Materials Informatics is a new scientific discipline that applies the principles of informatics to the design
of new materials. It shares much of the spirit of the materials genome initiative. Indeed, it envisages
the design of “specialized informatics tools for data capture, management, analysis, and dissemination”
and the need for “advances in computing power, coupled with computational modeling and simulation
and materials properties databases". Again, the possibility of sifting vast amounts of data reveals to be
the bottleneck of a suitable strategy.

In an attempt to incorporate the huge possibilities of Big Data to the field of scientific computing, some
proposals have been proposed very recently. The first one represents an attempt of working without
constitutive laws [10]. In fact, they propose a method that works directly with balance equations and
seeks for the experimental point that gives the state closest to equilibrium. To that end, it employs an
optimization procedure.

This method re-opens the epistemic controversy between the scientific approach followed by Kepler—
who, with the help of “big” data, was able to accurately describe planet’s orbits—or the one by Newton,
who unveiled the laws of physics behind gravitation that could finally explain why the computations
done by Kepler were right.

The other approach, closer to the one of Newton, is to discover governing equations from data [2]. These
methods need for some assumptions on the form of the particular sought physical laws, but determines
a precise form of governing laws even in the presence of noised data.

The main limitation that can be envisaged about these two approaches is their ability to cope with large
amounts of data. Furthermore, in an ICME approach we want to create new materials, still inexistent,
by extrapolating the conclusions obtained by experimental and computational data. This is not possible
without employing some form of machine learning, able to extract trends from data and to foresight the
properties of materials yet to come.

2 A journey in data-driven approaches

2.1 Early times of data-driven approaches
Of course, data-driven approaches in computational mechanics trace back to early parameter identi-
fication methods, that had an important popularity after the mid-nineties. Essentially, this approach
consisted of an inverse problem solving by finite elements so as to determine the value of the mate-
rial parameter that best fits with the experimental results. However, this approach needs a pre-defined
constitutive model and is therefore very intrusive in the process of material characterization.

By data-driven approaches, however, one tends to think of an approach that does no presuppose any
form of constitutive equation. In fact, the work that is often considered as the first in the field, the one
by Kirchdoerfer and Ortiz [10], does not employ any constitutive equation, and arose in an attempt to
employ data directly in the computations.
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Recent works by W. K. Liu and coworkers share important similarities with this rationale. For ins-
tance, in [1] a method is developed that works by designing a sort of response database for material
RVEs, such that it very much eases the task of designing new materials by simply interpolating among
selected microstructures. To circumvent this curse, Liu and coworkers developed a technique coined
as self-consistent clustering analysis (SCA). Basically, it relies on k-means clustering techniques to
characterize the macroscopic response of similar material microstructures.

2.2 The constitutive manifold
Recently, the authors introduced the concept of constitutive manifold. By applying manifold learning
to pairs of experimental or numerical stress-strain values, the manifold structure of these data can be
unveiled so as to ascertain the constitutive behavior of the material or structure [6, 7]. Assume that a set
of nexp experimental stress-strain couples are stored in our database. These couples are in fact points
XXXm ∈RD, m= 1, . . . ,nexp, in a space of dimension D= 12 (six stresses and six strains in Voigt notation).
If some coherence exists between strains and stresses (and this is no more than a constitutive equation),
then, these points could be projected without loss of information onto a manifold of dimension d� D.
Consider, for instance, a set of randomly generated points according to a generalized Hooke’s law. By
employing Locally Linear Embedding (LLE) techniques [13], for instance, it is easy to find out that they
pertain actually to a flat manifold. The result of embedding coordinates XXXm onto the two-dimensional
manifold gives the reduced coordinates ξ m.

The concept of constitutive manifold not only provides with a very intuitive and visual concept (if the
resulting manifold lives a small enough dimension). It allows to compute in a very efficient way by
iterating between the equilibrium equation (which is always linear and global) and the non-linear and
local constitutive manifold. The intersection between both manifolds will provide precisely with the
sought state of the system in the phase space. A very simple iterating algorithm can thus be established
that closely resembles the Large Time Increment technique by P. Ladeveze [9].

2.2.1 Hyperelasticity

Hyperelasticity deserves maybe a special comment, since it is characterized by the presence of a stored
energy (potential) function so as to guarantee energy conservation in closed cycles. In this framework,
data-driven approaches are directed towards the precise determination of the shape of this energy func-
tional. While the general procedure is to try to reproduce existing, well-known constitutive laws by
means of parameter fitting of experimental data, Montans and coworkers propose to avoid the use of
existing laws and to simply interpolate experimental results with the help of splines. This approach is
based upon an old technique developed by Sussman and Bathe [14] and is now known as what you
prescribe is what you get (WYPIWYG) hyperelastcity. It has been applied to transversely isotropic as
well as orthotropic materials, plasticity and compressible elasticity [11, 12].

2.2.2 Thermodynamic consistency

One of the recurrent questions when studying data-driven procedures in the framework of integrated
computational materials engineering (ICME) is that of noise in the data. Eventually, this could led to
inaccuracies that may have as a consequence the violation of some first principles. For instance, how
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do we guarantee energy conservation and strict positive entropy generation in the presence of noise in
the data?

Recently, the authors have presented a method able to incorporate noisy data and still guarantee the
thermodynamic consistency of the resulting simulations [3]. The method is developed by resorting to
the GENERIC formalism [5]. In a nutshell, the GENERIC (“General Equation for Non-Equilibrium
Reversible-Irreversible Coupling”) formalism seeks for an expression of the time evolution of the ne-
cessary variables to describe the material at hand, żzzt .

Basically, the GENERIC formalism assumes an evolution of the variables of the form

żzzt = LLL(zzzt)∇E(zzzt)+MMM(zzzt)∇S(zzzt), zzz(0) = zzz0, (1)

where LLL is the so-called Poisson matrix, which is responsible for the reversible (Hamiltonian) part of
the evolution of the system. E represents the energy of the system and MMM represents the friction matrix,
responsible for the irreversible part of the evolution of the system. S represents the entropy of the system
for the particular choice of variables zzz. The choice of these variables is not particularly relevant, since
even if they result to be finally related, this will be detected by the method.

Matrices LLL and MMM need to satisfy the following relationship :

LLL(zzz) ·∇S(zzz) = 000, (2a)

MMM(zzz) ·∇E(zzz) = 000, (2b)

often referred to as degeneracy conditions. This is fulfilled by simply choosing LLL skew-symmetric and
MMM symmetric, positive semi-definite. Then it is straightforward to verify that

Ė(zzz) = ∇E(zzz) · żzz = ∇E(zzz) ·LLL(zzz)∇E(zzz)+∇E(zzz) ·MMM(zzz)∇S(zzz) = 0, (3)

which is equivalent to the very basic principle of conservation of energy in closed systems. In turn,

Ṡ(zzz) = ∇s(zzz) · żzz = ∇S(zzz) ·LLL(zzz)∇E(zzz)+∇S(zzz) ·MMM(zzz)∇S(zzz)≥ 0, (4)

guarantees the satisfaction of the second principle of thermodynamics.

The method consists, then, in the identification of matrices LLL and MMM—something straightforward in
the vast majority of the cases—and the particular structure of the gradients of energy and entropy
(Hamiltonian and dissipative parts of the constitutive equations, respectively).

3 Hybrid methodologies
As just emphasized, a growing interest has arose on the development of data-driven techniques to avoid
the employ of phenomenological constitutive models. While it is true that, in general, data do not fit
perfectly to existing models, and present deviations from the most popular ones, we believe that this
does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the
constitutive characterization of materials. Instead, what we recently proposed [8], by means of machine
learning techniques, to develop correction to those popular models so as to minimize the errors in
constitutive modeling.
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Plenty of effort has been dedicated throughout history to create very accurate models, however, we also
know that no model is perfect : it is always subjected to certain limiting hypotheses. In [8], we provided
an alternative route by enhancing or correcting existing, well-known, models with information coming
from data, thus performing a sort of data-driven correction. In that first work a special effort was put
on the correction of plastic yield functions, while work in progress adresses more complex scenarios
involving hardening and damage.

The proposed data driven correction technique is conceptually simple. Imagine that our departure point
is a given, well-known parametric model M (ppp). It is important to keep in mind that we are looking
for an enhancement or correction of the previous model based on the available experimental results.
Therefore, a discrepancy model D(ccc), which applies to the first model, needs to be defined. So to
speak, reality, R, is approximated as

R = M (ppp)+D(ccc)
∣∣

ppp, (5)

where ppp represents the set of parameters governing the model and ccc represents the set of parameters
needed to define the necessary correction.

Since our measurement capabilities will in general be constrained to some experimentally observable
quantities, both our objective reality and the correction to the model will be restricted to these experi-
mental settings. In other words,

R
∣∣
sss ≈M (ppp)+D(ccc)

∣∣
ppp,sss. (6)

It is worth to mention that the way we define the observables sss could have an important impact over the
calibration of the set of correction parameters, ccc and remains a research field very active as discussed
later.

In [4] a similar route was employed for enriching hyper-elastic models within the thermodynamic (GE-
NERIC) rationale.
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