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Abstract :

Local analysis and visualization of convective heat transfer is fundamental for many engineering ap-
plications. In fact, the correlation between the flow structure and the transport of heat by advection
and diffusion is crucial for designing and optimizing devices undergoing heat transfer, such as heat
exchangers. The field synergy principle has been used for more than two decades in order to analyze
and enhance the convective heat transfer in different applications. In this paper, the validity of the field
synergy principle in elliptic flows is tested for both laminar and turbulent flow regimes. For this end, the
flow past a backward facing step is considered for a wide range of Reynolds numbers based on the step
height ranging from 36 to 36,000. It is shown that the synergy angle and synergy number both fail to
represent the local physics of heat transfer process near the step. This is caused by the assumption of
negligible molecular and turbulent thermal diffusivities in this principle. In this paper, it is shown that
these diffusivities play a crucial role in heat transfer in elliptic flows and cannot be ignored. Moreover,
a global analysis shows that the field synergy number could be used to predict the Nusselt number va-
riation if the elliptic region in the flow is small however, the synergy angle fails here also to characterize
the variation in Nusselt number.

Mots clefs : Convective heat transfer, advection transport, diffusion trans-
port, backward facing step, elliptic flows

1 Introduction
Convective heat transfer is found in natural phenomena or in man-made devices and it is thus essential
to different fields in physics and engineering. The domain of applications spans over a wide range from
simple domestic equipment, industrial devices to weather prediction [1, 2].

Convective heat transfer is the resultant of advective and diffusive transport in a fluid flow. Therefore, it is
crucial to understand and characterize locally the effect of the flow structure on the heat transfer pheno-
mena occurring in a given application. This could be done for instance by using the famous “Heatlines"
introduced by Kimura and Bejan [3] and based on superposing the heat conduction lines and enthalpy
flow lines for a given fluid flow [4]. Other visualization techniques exist in the open literature aiming
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to analyze the local flow and heat transfer physics such as the energy streamlines and energy flux vec-
tors [5], field synergy principle [6, 7, 8] and the Lagrangian description [9]. The readers can refer to
Mahapatra et al. [10] for a review on these different methods.

In this paper, we focus on the validity Field Synergy Principle introduced by Guo et al. [6] which is based
on modifying the intersection angle between velocity vector and temperature gradient and its application
to heat transfer enhancement. This principle has been widely used in the last two decades to study the
heat transfer enhancement in parabolic and elliptic flows [11, 12, 13, 14, 15, 16, 17, 18], in which most
engineering applications involve elliptic flows. However, the use and validity of this principle has been
the issue of much debate, especially when applied to elliptic flows [19, 20, 21, 22, 23]. Hereafter, a brief
introduction to the Field Synergy Principle is given.

In 1998, Guo et al. [6] published an article based on the analogy between conduction and convection heat
transfer in the presence of a heat source. After, integrating the energy equation for a parabolic boundary
layer flow, they obtained the following relation between the field synergy number Fc = Nux/ (RexPr),
introduced later by Guo et al. [24], and the dot product of the velocity vector and temperature gradient
u · ∇T :

Fc =

∫ δt
0 u · ∇Tdy

U∞ (T∞ − Tw)
(1)

Or in other terms :

Fc =

∫ δt
0 |u| |∇T | cos (β) dy

U∞ (T∞ − Tw)
(2)

It is worthy to note that the field synergy number Fc is similar to the Stanton number widely used to
quantify heat transfer problems [22, 23].

According to this relation, Guo et al. [6] suggested three ways to enhance the heat transfer process : by
increasing the Reynolds and/or Prandlt numbers, increasing the magnitude of the dot product and by
increasing the synergy angle β between the velocity vector and the temperature gradient given in Eq. 2.
While the first two statements are evident, the third one lacks some accuracy. In fact, and according to
Eq. 1 and Eq. 2, the intersection angle between the velocity vector and the temperature gradient β should
be far from nπ/2, with n an odd number, and closer to (n− 1)π/2 in order to enhance the heat transfer
process.

A subsequent study by Tao et al. [25] suggests the extrapolation of this principle to elliptic flows to cater
for most heat transfer problems in engineering. In this study, Tao et al. [25] proposed integrating the
energy equation in the longitudinal and transverse directions while neglecting the streamwise diffusive
term in the fluid k∂2T/∂x2. Following this method, only global parameters are obtained without gaining
insight into the local physics of the heat transfer process. Moreover, we show in the present paper that
the effect of streamwise diffusion in the fluid on the heat transfer process is significant for local analysis
and thus it cannot be neglected.

Wu and Tao et al. [26] later performed a similar study on the flow and heat transfer downstream three-
dimensional longitudinal vortex generators where no further improvement is provided on the local va-
riation of the advective transport neither on the local variation of the synergy angle.
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As a summary, the field synergy angle, which is the essence of the field synergy principle, can never
be used alone to describe the heat transfer process. In this paper we present a detailed and substantial
discussion of the validity of the field synergy principle by taking into consideration the effect of the
fluid diffusion term in the energy equation, which has been neglected in previous works. Moreover, we
perform a local analysis of the different physical parameters participating in the heat transfer phenomena
to show that the field synergy principle fails to describe the local physics of convective heat transfer. For
this end, numerical simulations are performed for a flow past a backward facing step. The results are
first validated against experimental data then the analysis is performed for a wide range of Reynolds
numbers from laminar to turbulent flow regimes. The eddy diffusion is also taken into consideration for
the turbulent flow and we show that its effect is significant on the field synergy principle.

The paper is organized as follows, in Section 2 we define the computational domain and numerical
method adopted, the local analysis of the field synergy principle is given in Setion 3.1 for laminar flow
regime and in Section 3.2 for turbulent flow. The global analysis of the Nusselt number and field synergy
parameters are given in Section 3.3. Section 4 is devoted for the concluding remarks.

2 Problem Description

2.1 Computational domain and boundary conditions
The computational domain is based on a benchmark provided by the National Aeronautics and Space
Administration (NASA) [27] as shown in Fig. 1 for a flow past a backward facing step. The numerical
results will be validated against NASA’s numerical results and experimental data obtained by Driver and
Seegmiller [28] in a subsequent section 2.3.

As stated in the introduction (Section 1), the axial diffusive term in the fluid region
(
∂T 2/∂2x

)
was

neglected in previous studies [6, 25]. To consistently test the validity of the field synergy principle and
the assumption that the diffusive transport in the flow direction is insignificant in elliptic flows, the wall
heat flux must only emanate vertically in y direction (keeping in mind that heat flux is normal to the
boundary). Consequently, all horizontal walls are set to a constant temperature Tw = 350 K whereas
the only vertical wall, namely the backward facing step, is thermally insulated.

The working fluid is air entering with a uniform velocity profile at constant temperature Tin = 300 K.
Atmospheric pressure is prescribed at the domain outlet. No-slip boundary condition is prescribed on
all solid surfaces.

The flow Reynolds number is based on the step height H = 1 m and simulations are performed for
Reynolds numbers ReH = 36, ReH = 360, ReH = 3, 600 and ReH = 36, 000 ; the lowest Reynolds
number ReH = 36 exhibits laminar flow, while the highest Reynolds numbers are turbulent.
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Figure 1 – Schematic of the computational domain and boundary conditions (adapted from NASA
benchmark [27])

2.2 Governing equations and numerical procedure
The laminar flow field is governed by the two-dimensional (2D) Navier-Stokes equations. The continuity
and momentum equations for an incompressible Newtonian fluid are as follows :

∇ · u = 0 (3)

u · ∇u = −1

ρ
∇p+

1

ρ
∇ · S (4)

In the linear momentum equation S is the viscous stress tensor :

S = µ
[
∇u +∇uT

]
(5)

The energy equation is given by :

ρcp∇ · (uT ) = kf∇2T (6)

where cp is the specific heat and kf is the molecular thermal conductivity.

The turbulent flow is modeled by the two-dimensional (2D) Reynolds Averaged Navier-Stokes (RANS)
equations. While the continuity equation remains unchanged, the momentum equation for turbulent in-
compressible Newtonian fluid flows becomes as follows :
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u · ∇u = −1

ρ
∇p+

1

ρ
∇ · S− u′∇u′ (7)

The term u′∇u′ is the Reynolds stress tensor resulting from the averaging procedure on the nonlinear
convective terms in the momentum equations. This term is computed by the Prandtl closure hypothesis
with the k − ω SST (Shear Stress Transport) turbulence model [29].

The energy equation is also computed in the fluid domain and is given by :

ρcp∇ · (uT ) = ∇ · (keff∇T ) (8)

where keff = kf + kt to account for the effect of turbulent fluctuations as modeled by the turbulent
Prandtl analogy embedded in k − ω SST model.

The solver used for the flow computation is the CFD code ANSYS Fluent 18.0 [30], which is based
on cell-centered finite volume discretization method. The governing equations are solved sequentially
with double precision and a second-order upwind scheme [31] for spatial discretization of the convective
terms. The diffusion terms are central differenced and second-order accurate. Pressure-velocity coupling
is achieved by the SIMPLE algorithm [30].The residual value 10−6 is set as the convergence criterion for
the solutions of the flow and energy equations. Beyond this value no significant changes were observed
in the velocity and temperature fields.

2.3 Meshing and experimental validation
A non-uniform structured two-dimensional mesh is generated while paying special attention to the near-
wall refinement at all solid boundaries and near the backward facing step, so as to take into account the
high velocity and temperature gradients in these regions.

The different mesh densities and their main features are given in Table 1. To determine the appropriate
mesh density for solution grid independence, the solver is run with increasing mesh densities until no si-
gnificant effect on the results is detected. Themesh validity verification is performed by using themethod
proposed by Celik [32] where the grid convergence index (GCI) and the apparent order of convergence
pc can be obtained. The mesh validity verification is applied to the global Nusselt number Nu (Eq.(9))
representing the ratio of convective to conductive heat transfer :

Nu =
hH

kf
(9)

whereh is the overall convective heat transfer coefficient (W/m2K),H(m) the step height and kf (W/mK)

is the thermal conductivity of the working fluid.

In Eq.(10), h is calculated from the logarithmic mean temperature difference :

h =
q̇

A∆Tlm
(10)

where q̇ is the overall rate of heat transfer (W) defined in Eq.(11), A (m2) is the heat transfer area and
∆Tlm is the logarithmic mean temperature difference defined in Eq.(12).

q̇ = ṁcp∆T (11)
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where ṁ is the mass flow rate (kg/s) and ∆T = Tout − Tin is the bulk temperature difference between
the inlet and outlet.

∆Tlm =
(Tw − Tin)− (Tw − Tout)

ln( Tw−TinTw−Tout )
(12)

As shown in Table 1, the uncertainty in the fine-grid solution is found to be about 0.02% and the order
of convergence is 7.6. Therefore, the last mesh is considered for all simulations. For more details about
the calculation of the parameter GCI and pc, the readers can refer to Celik [32]. It should be noted
that the mesh study presented here is performed for the highest Reynolds number i.e. ReH = 36, 000

representing the critical case due to highest fluctuations and gradients. The fine mesh is then used for
the lower Reynolds numbers insuring good accuracy of the numerical results.

The numerical simulations are performed on eight parallel Intel® Core™ i7-7700 2.80 GHz processors.
Each run takes around one day to converge.

Table 1 – Mesh characteristics and sensitivity analysis

Cell number n 224,556 402,864 1,268,245
Mesh size l = (V/n)1/2 (mm) 0.0815 0.061 0.034

Global Nusselt number Nu 58.47 58.47 59.15

Grid Convergence Index GCI(%) – – 0.02

Apparent order of convergence pc – – 7.60

The numerical method is validated with experimental data obtained by Driver and Seegmiller [28] using
Laser Dopler Velocimetry and with numerical data reported by NASA [27] using SST turbulence model
[29] for a Reynolds number of 36,000. The axial velocity profiles at several x/H positions from the
actual study are compared to those obtained from experimental and numerical simulations as shown in
Fig. 2. From this figure, it could be concluded that a fair agreement is obtained between actual CFD
results and those obtained in the literature. The maximum relative error did not exceed 4% between the
present study and NASA’s numerical results. In this figure, Uref is the reference velocity at the center-
channel near x/H = −4 used to normalize the velocity.

3 Results and Discussion
In this section, the Nusselt numbers are calculated using three different methods. To avoid redundancy
and confusion, we denote :

•Nuq the Nusselt number calculated based on the wall heat flux obtained directly from the CFD results
on the solid boundaries.

• Nus the Nusselt number calculated based on the Field Synergy principle from Eq.(13).

• Nuc the Nusselt number calculated based on the corrected formulae from Eq.(16) for laminar flows
and Eq.(22) for turbulent flows.
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(a) (b)

(c)

Figure 2 – Axial velocity profiles at x = 1 (a), x = 4(b) and x = 10 (c)
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3.1 Laminar flow
Starting from the following Eq.(13) which is the y integration of the energy equation for a laminar
parabolic flow :

ρcp

∫ δth

0

(
u
∂T

∂x
+ v

∂T

∂y

)
dy = −kf

∂T

∂y

∣∣∣∣∣
w

(13)

Eq.13 could also be written as follow :

ρcp

∫ δth

0
(|u| · |∇T | · cos (β)) dy = qw (14)

Guo’s "Novel concept for convective heat transfer" suggested three possible ways to increase the heat
transfer and they are :
• Increasing the Reynolds and Prandlt numbers
• Increasing the fullness of dimensionless velocity and temperature profiles which he defined asU = U

U∞

and ∇T = ∇T
(T∞−Tw)/δth

• Increasing the angle between the velocity and temperature gradient vectors. (Later published by Tao [25]
as the decrease in the angle which will cause the increase in cos(β))

While the first two suggestions are self evident, the last one presents an obvious overlooking of the fact
that the simplified version of the energy equation becomes obsolete when the synergy angle is changed,
since the diffusive transport in the axial direction can no longer be neglected due to the fact that the
whole flow structure has changed locally.

A more correct representation of the heat transfer in an elliptic flow should be as follows. Starting from
the complete energy equation in a two dimensional flow :

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂x

(
kf
∂T

∂x

)
+

∂

∂y

(
kf
∂T

∂y

)
(15)

Isolating and integrating in the y direction :

qw = kf
∂T

∂y

∣∣∣∣∣
w

= ρcp

∫ δth

0

(
u
∂T

∂x
+ v

∂T

∂y

)
dy −

∫ δth

0

∂

∂x

(
kf
∂T

∂x

)
dy (16)

or,

qw = kf
∂T

∂y

∣∣∣∣∣
w

= ρcp

∫ δth

0
(|u| · |∇T | · cos (β)) dy −

∫ δth

0

∂

∂x

(
kf
∂T

∂x

)
dy (17)

Eq. 17 shows that the heat flux, i.e. the Nusselt number, depends on both : advection and diffusion. The
advection term was described by Tao et al. [25] as the Synergy, and the diffusion is totally neglected.
Now we will show how that the field synergy principle and the synergy angle β are not representative
of the local heat transfer in elliptic flows.

Calculating the local Nusselt number based on the step height H from qw according to Eq. (18), the
validity of the field synergy principle can be put to the test.
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Nux =
qwH

kf (Tw − Tb)
(18)

where Tb is the fluid bulk temperature at given x/H .

The results of the local Nusselt are shown in Fig. 3 from the wall heat flux obtained from CFD results (as
Nuqx in red), from synergy in Eq.13 (as Nusx in black) and from the present study’s modified equation
in Eq.16 (as Nucx in blue).

Figure 3 – Local Nusselt number from the different methods along with local the synergy angle

From this figure, it could be observed that the Field Synergy principle’s assumption is valid throughout
the entrance and the developed region of the flow, except near the proximity of the step. That’s where
the synergy angle is varied greatly, hence the claim that the convective heat transfer can be improved by
increasing the synergy angle becomes unreliable since the equation defining this principle is not fully
representative of the heat transfer. A close-up on the variation of the Nusselt numbers near the step is
shown also in Fig. 3 to the right side, where it is clear that the behavior of the transport described in
Eq.13 (using the Field Synergy principle) is completely different than the actual phenomenon. However,
the present study’s claim of the importance of the diffusive transport in the streamwise direction upon
the change in the flow structure is clearly representing the transfer of the thermal energy.

In addition, from Fig. 3, one can evaluate the claim that the increase in the synergy angle is a way to
increase the heat transfer is misleading, once the Nusselt number is juxtaposed with the synergy angle.
In fact, an opposite behavior is witnessed after x = 0 where the increased in β is mirrored by a decrease
in Nuqx and vice versa. The reason behind this discrepancy can be simply explained by referring to the
energy equation (Eq.6) where the dot product of the advective term can be rewritten as the multiplication
of both magnitudes of u and ∇T with the cosine of the synergy angle. Consequently, it is more fair to
analyze the heat transfer vis-à-vis the variation in cos(β) as shown in Fig. 4.
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Figure 4 – A close up on the Local Nusselt number for the different methods and cos(θ)

Obviously, cos(β) in the advective term is not solely responsible for the heat transfer since it did not
reflect the increase in the local Nusselt number at x < 0, due to the presence of the prominent diffusive
term especially when the synergy angle is changing, which further supports the claim in this manuscript.
This issue will be further elaborated by showing the contribution of each of the advective and diffusive
terms given by the following equations respectively and shown in Fig. 5.

ψ = ρcp

∫ δth

0

(
u
∂T

∂x
+ v

∂T

∂y

)
dy (19)

ξ =

∫ δth

0

∂

∂x

(
kf
∂T

∂x

)
dy (20)

The results in Fig. 5 further support the claim that diffusion cannot be neglected in elliptic laminar
flows especially near the step where the flow will be modified. Hence, the effect of the diffusion term is
responsible for the increase in the local Nusselt number near the step as shown in Fig. 4.

Figure 5 – Variation of ψ and ξ terms with X
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3.2 Turbulent flow
In this section we will consider turbulent flow regime. The energy equation computed by k − ω SST
including the turbulent prandtl analogy is as follows :

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂x

(
kf
∂T

∂x

)
+

∂

∂y

(
kf
∂T

∂y

)
+

∂

∂x

(
kt
∂T

∂x

)
+

∂

∂y

(
kt
∂T

∂y

)
(21)

where kt is the turbulent eddy conductivity.

Isolating and integrating in the y direction :

qw = kf
∂T

∂y
= ρcp

∫ δth

0

(
u
∂T

∂x
+ v

∂T

∂y

)
dy−

∫ δth

0

∂

∂x

(
kf
∂T

∂x

)
dy−

∫ δth

0

[
∂

∂x

(
kt
∂T

∂x

)
+

∂

∂y

(
kt
∂T

∂y

)]
dy

(22)

When the local Nusselt number based on the step height H is calculated from qw, the validity of the
Field Synergy principle for elliptic turbulent flows can be put to the test. The results of the local Nusselt
are shown in Fig. 6 from the wall heat flux, from Eq.13 and from the present study’s claim in Eq.22.

Figure 6 – Local Nusselt number for the different methods and the synergy angle for Re = 36, 000

Similar to the laminar case, the claim of the Field Synergy principle is compromised near the step, where
the synergy angle is varied greatly as shown in Fig. 6. On the other hand, when the full energy equation
is taken into account such as in Eq.22 the heat transfer is described with good accuracy. This means
that the diffusive and turbulent transports of the thermal energy are contributing to the heat transfer and
could not be neglected as assumed by Tao et al. [25] in elliptic flows.

The contribution of each of the advective ψ, diffusive ξ and turbulent transport ξt, given in Eq. (23), are
shown in Fig. 7. This figure highlights the importance of diffusive and turbulent transport terms relative
to the advective term. Thus neglecting these terms induces variance between the computed Nusselt
number and that obtained using the field synergy principle.

ξt =

∫ δth

0

[
∂

∂x

(
kt
∂T

∂x

)
+

∂

∂y

(
kt
∂T

∂y

)]
dy (23)
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Figure 7 – Variation of ψ, ξ and ξt terms with x

The ratio of the Nusselt number derived from the synergy (Nusx) over the actual span-averaged local
Nusselt number obtained from CFD or full energy equation (Nuqx) is shown in Fig. 8. It could be ob-
served that near the step, where the flow is classified as elliptic flow, the field synergy principle induces
a relative error of about 32%, even in a highly turbulent case with a high Péclet number, in opposition
to the claim of Tao et al. [25] who claimed that the field synergy principle works well for high Péclet
numbers.

Figure 8 – Variation of Nu
s
x

Nuqx
with x

3.3 Global analysis
In this section of this manuscript, the global Nusslet number and synergy angle variation with Reynolds
number is analyzed as shown in Fig. 9. As shown in this figure, the Nusselt number increases with in-
creasing Reynolds number while cos(β) varies slightly between 0.048 and 0.056 and shows a maximum
at a Reynolds of 3,600. Beyond this Reynolds number cos(β) decreases opposing to the variation in
Nusselt number. Thus it could be concluded that cos(β) cannot be used alone to represent the global
heat transfer as for the local analysis.
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In addition, the Stanton number, sometimes referred to as the Field synergy number, shows a decreasing
behavior with increasing Reynolds number, due to the increase of Re at a higher rate than the increase
of the global Nusselt number.

Figure 9 – Global Nu and cosine of the average Synergy angle vs. ReH

4 Conclusion
Field synergy principle was extensively used to study parabolic and elliptic convective heat transfer. In
this paper we study the validity of this principle by considering the flow past a backward facing step for
both laminar and turbulent flow regimes.

The concluding remarks are summarized as follows :

• The assumption that the molecular thermal diffusivity in the streamwise direction is negligible proves
to be invalid for elliptic flows. Therefore, the field synergy number and synergy angle cannot be used to
describe the local heat transfer process.

• In turbulent flow regimes, neglecting the turbulent thermal diffusivity led to misleading results in the
field synergy parameters and thus this principle fails to describe accurately the physics of heat transfer
near the step.

• If the elliptic region in the flow is small relative to the overall computational domain, the field sy-
nergy number can be used to predict the variation in the overall Nusslet number. However, special care
should be taken into consideration when dealing with complex geometries in which elliptic regions are
dominant.

• The field synergy angle cannot be used alone to describe local and global variation in the Nusselt
number or convective heat transfer coefficient.
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