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Résumé :
La théorie mathématique de la méthode des éléments finis pour la simulation d’écoulements visqueux
incompressibles est un sujet bien maîtrisé depuis près de quarante ans. Cependant le plus souvent les
analyses sous-jacentes supposent d’une part que le domaine de l’écoulement est un polytope, et d’autre
part que la solution exacte est régulière. Ces hypothèses étant plutôt contradictoires on s’emploie à
démontrer des résultats de convergence optimaux s’appliquant au cas où la vitesse est imposée sur
toute la frontière d’un domaine d’écoulement régulier. Plus précisément ces résultats concernent des
méthodes d’ordre deux ou plus dans la normeH1 pour la vitesse et la normeL2 pour la pression, basées
sur des triangles ou des tétraèdres. Le principal ingrédient de cette démarche est la prise en compte des
valeurs connues de la vitesse aux noeuds situés sur la frontiére courbe, qu’ils soient des sommets ou
pas, à l’instar de la technique isoparamétrique. En revanche ici les fonctions-test sont polynomiales
par élément s’annullant sur toute la frontiére du polytope approchant le domaine courbe, constitué des
simplexes droits du maillage utilisé. En fait les fonctions de forme sont polynomiales par morceaux
également, néanmoins ne vérifiant des conditions aux limites que sur la vraie frontière. De la sorte on
peut se passer des éléments courbes sans perte de la qualité d’approximation. Des exemples sur des
méthodes de Galerkin classiques telles la méthode de Taylor-Hood et la méthode conforme de Crouzeix-
Raviart, servent à illustrer le bien fondé de l’approche préconisée. En outre la convergence optimale
en norme L2 de la vitesse est démontrée. À la connaissance de l’auteur ces derniers résultats sont
inédits, dans le cadre de l’approximation de problèmes aux limites posés dans des domaines courbes
par éléments finis d’ordre deux ou plus en normes de Sobolev naturelles.
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Abstract :

The mathematical theory of the finite element method for the simulation of viscous incompressible flow
is mastered since over three decades in its basic aspects. However in genral the underlying analyses
are carried out under the assumptions that the flow domain is a polytope, and that the exact solution is
smooth. Since both hypotheses are rather contradictory, we endeavor to establish optimal convergence
results for the case where the velocity is prescribed all over the boundary of a smooth flow domain.
More precisely such results apply to triangle- or tetrahedron-based methods of order two or more in the
H1-norm for the velocity and the L2-norm for the pressure. The main feature of our approach is the
enforcement of prescribed velocity values at nodes on the curvilinear boundary, instead of the boundary
of an approximating polytope, akin to method’s isoparametric version. However in contrast to the latter,
in the former the test-functions are piecewise polynomials that vanish everywhere on the boundary of
this polytope - that is, the union of the straight-edged simplexes of the mesh in use. Incidentally the
shape-functions are also piecewise polynomials that nevertheless fulfill boundary conditions only at
nodes located on the true boundary. In this way it is possible to rule out curved elements without order
erosion. Examples of classical Galerkin methods such as Taylor-Hood’s and the conforming Crouzeix-
Raviart mixed method for triangles illustrate the strength of the new approach. Furthermore optimal
convergence of the velocity in the L2-norm is demonstrated. To the best of author’s knowledge such
results are unprecedented in the framework of the approximation of boundary value problems in curved
domains by finite element methods of order two or more in natural Sobolev norms.

Mots clefs : Domaine courbe ; écoulement incompressible ; élément fini ; fluide
visqueux; vitesse imposée.

Keywords : Curved domain ; finite element ; incompressible flow; prescribed
velocity ; viscous fluid.

1 Introduction
In the framework of the finite-element solution of second order boundary value problems posed in cur-
ved domains with Dirichlet conditions, it is well known that a considerable order lowering may occur if
prescribed boundary values are shifted to nodes that are not mesh vertexes of an approximating polygon
or polyhedron formed by the union of straight-edged N -simplexes of a fitted mesh. Over four decades
ago some techniques were designed in order to remedy such a loss of accuracy, and possibly attain the
same theoretical optimal orders as in the case of a polytopic domain, assuming that the solution is suf-
ficiently smooth. Two examples of such attempts in the framework of two-dimensional problems are
the interpolated boundary condition method by Nitsche and Scott (cf. [10] and [18]), and the method
introduced by Zlámal in [23] and extended by Žénišek [21]. Among such techniques the finite element
method’s isoparametric version is by far the one most widely in use since the sixties (cf. [22]) in order
to recover the lost optimality. One of the main reasons why it became so popular is the fact that the
isoparametric technique applies to both two- and three-dimensional problems. We recall that this ver-
sion of the finite element method is based on elements with curved boundary portions, aimed at better
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approximating a curved boundary than straight edges or plane faces. In this case the aforementioned
shift of prescribed boundary values is avoided, since all nodes to which such values apply remain on
the true boundary. The price to pay however is the manipulation of rational functions as both shape-
and trial-functions defined upon the curved elements, and the resulting compulsory use of numerical
integration. While on the one hand this is far from being an obstacle in most current applications such as
linear problems with constant coefficients, numerical integration can be a delicate issue in more complex
situations. The technique exploited in this work allows overcoming all such issues, since it is based only
on polynomial algebra upon an ordinary (i.e. a straight-edged) N -simplex. Moreover, in contrast to the
simple polygonal approach no erosion of the theoretical order of a given interpolation inherent to the
method occurs, for methods which are not of the lowest possible order. In short, our technique is aimed
at ensuring a theoretical order greater or equal to two in the natural norm, without the use of curved
elements and interpolating functions other than piecewise polynomials.
Actually the conception of the finite-element technique for solving boundary value problems with a
smooth curvilinear boundary considered in this work is close to the interpolated (Dirichlet) boundary
condition method studied in [4]. Though intuitive and known since the seventies, the latter technique
has been of limited use so far. Among the reasons for this lies its difficult implementation, the lack of
an extension to three-dimensional problems and restrictions on the choice of boundary nodal points to
reach optimal convergence rates. In contrast our method is simple to implement in both two- and three-
dimensional geometries. Moreover it is particularly handy, whenever a finite element method has normal
component or normal derivative degrees of freedom as illustrated in [14] and [17]. Indeed when a me-
thod incorporates this type of degree of freedom the definition of isoparametric finite-element analogs
is not always simple or clear (see e.g. [3]).
It is important to point out that efficient finite-element techniques are known since long, to optimally
handle boundary conditions other than Dirichlet’s, such as Neumann or Robin boundary conditions pres-
cribed on curved boundaries. In this respect the author refers for instance to the works by Barrett and
Elliott [2] and [1], besides [20] where a clear explanation on the issues brought about by Neumann
conditions prescribed on curved boundaries is given.

The technique applied in this paper was introduced in [12] in connection with triangular Lagrange finite
elements of any order k greater than one to solve the Poisson equation posed in a smooth curvilinear
domain. In the subsequent work [13] the author addressed the case of tetrahedral Lagrange elements of
arbitrary order for second order elliptic PDEs in the same class of domains. A synthesis of both papers
is given in [15]. In [11] the author and co-worker used the same approach to the solution of Maxwell’s
equations with a Hermite finite element method. In this work we push further the study of this methodo-
logy given in [16] as applied to incompressible viscous flow. More precisely thsi work can be outlined
as follows.
Following a brief description of our technique to handle velocity Dirichet conditions on curvilinear
boundaries, a priori error estimates in natural norms given [16] for the Taylor-Hood element [8] are
recalled. Next such results are extended to our version of the Crouzeix-Raviart triangle [7] for curved
domains. Then unprecedented velocity error estimates in the L2-norm are given for both methods. Nu-
merical results obtained with the second-order Taylor-Hood triangular element and the aforementioned
Crouzeix-Raviart method are supplied. A comparison of both methods with their respective isoparame-
tric versions is also carried out.
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2 Method description for a model problem
For the sake of conciseness in this work only the two-dimensional case is considered. Applications and
studies of the same technique for three-dimensional problems can be found in [13] and [16].
Referring to [12] and [16] for further details, here we describe our technique to solve incompressible
flow problems with Dirichlet velocity conditions prescribed on smooth curved boundaries, by solving a
simple model problem as follows. Let Ω be a bounded two-dimensional domain and Γ be its boundary
with outer normal vector n. Γ is assumed to be sufficiently smooth for the required regularity of the
solution to our model problem to hold true. In any case Γ must be of the Cm-class for somem > 0.
Let k > 1 and f be given in [Hk−1(Ω)]2. Denoting byL2

0(D) the subspace ofL2(D) consisting functions
whose integral in D vanishes for any bounded open set D ⊂ <2. We wish to find a velocity u ∈
[Hk+1(Ω)]2 and a pressure p ∈ Hk(Ω) ∩ L2

0(Ω) that solves the following Stokes system in suitable
dimensionless form : 

−∆u +∇p = f in Ω

∇ · u = 0 in Ω

u = g on Γ,

(1)

assuming that g satisfies
∮

Γ g · n ds = 0 and g ∈ [Hk+1/2(Γ)]2.
Now let P = {Th}h be a uniformly regular family of finite element meshes consisting of straight-edged
triangles satisfying the usual compatibility conditions (see e.g. [6]). Every element of Th is to be viewed
as a closed set. Moreover each one of these meshes is assumed to fit Ω in such a way that all the vertexes
of the polygon ∪T∈ThT lie on Γ. We denote the interior of this union set by Ωh. Let Γh be the boundary
of Ωh, hT be the diameter of T ∈ Th and h := maxT∈Th hT .
We make the very reasonable assumption that every mesh triangle has no more than one edge in Γh. The
subset of Th consisting of elements having at least one edge on Γh is denoted by Sh.
The finite-element approximate problem for (1) will be defined in connection with three linear manifolds
or spacesWh, Vh and Qh associated with the mesh Th, playing the following roles :

Wh is the set in which the velocity is searched for;

Vh is the velocity test-function space;

Qh is the pressure shape- and test-function space.

Now f̃ ∈ [L2(Ωh)]2 being the extension of f by zero to Ωh \ Ω, we set for u,v ∈ [H1(Ωh)]2 and
q ∈ L2(Ωh) : 

ch(u, v) :=
∫

Ωh
∇u · ∇v dx

bh(q,v) :=
∫

Ωh
q∇ · v dx

and Lh(v) :=
∫

Ωh
f̃ · v dx.

(2)

Then the finite-element counterpart of (1) is defined in the form of the following system :
Find uh ∈Wh and ph ∈ Qh such that :
ch(uh,v) + bh(v, ph) = Lh(v) ∀v ∈ Vh,

bh(uh, q) = 0 ∀q ∈ Qh.
(3)

Now let V k
h be the standard Lagrange finite-element space consisting of continuous functions that vanish

on Γh, whose restriction to each T ∈ Th belongs to Pk, where Pk is the space of polynomials of degree
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less than or equal to k. To make ideas clear, and without loss of essential aspects, let us consider the case
where g ≡ ~0.
In order to recover optimal convergence rates in the natural norm for (1), when the problem is defined
in a polygon as predicted in the specialized literature (cf. [5]), we propose the following :
Let W k

h be a space consisting of functions defined in Ωh whose restriction to every element T ∈ Th
belongs to Pk, which are continuous at the vertexes of T and at the same (Lagrange) nodes used to
define functions in V k

h not located on the edges of T contained in Γh, ∀T ∈ Th. Besides this, a function
w ∈W k

h is required to vanish at all the vertexes of Γh, and at certain points P ∈ Γ belonging to the set
∆T attached to an elements T ∈ Sh containing the underlying portion of Γ, constructed as described
below ∀T ∈ Sh.
∆T is the closed set delimited byΓ and the edge eT of T contained inΓh. For every T ∈ Sh the extension
ofw to ∆T \Ωh is required to vanish at k−1 points P ∈ Γ located between two neighboring vertexes of
Γh. To make implementation more straightforward every such a node P can be chosen to be the nearest
intersection with Γ of the line joining the vertexOT of T opposite to eT to a nodeM located on eT used
to define functions in Vh.
We consider beforehand that the expression ofw ∈Wh in every element T ∈ Sh is extended to ∆T \Ωh.
In Figure 1 we illustrate the construction of nodes P ∈ Γ for k = 3.
Before going into the specific finite-element analogs of (1) studied in this paper we give some further
definitions. Ω̃h being the set Ω ∩ Ωh we shall denote by ‖ · ‖0,h the standard norm of L2(Ω̃h), and
by |w|1,h the semi-norm ‖ ∇w ‖0,h of a field w ∈ [H1(Ω̃h)]2. Notice that in case Ω is convex Ω̃h is
nothing but Ωh.

2.1 Approximation by the Taylor-Hood element
In the case of the second-order Taylor-Hood element we work with the following discrete spaces :

Wh := [W 2
h ]2;

Vh := [V 2
h ]2;

Qh := V 1
h ∩ L2

0(Ωh).

For such choices the following error estimate was proven in [16] :

Theorem 1 Set Ω̃ := Ωh∪Ω for all Th ∈ P and assume that there exists ũ and p̃ defined in Ω̃ fulfilling :

ũ|Ω = u and p̃|Ω = p;

ũ =
−→
0 a.e. on Γ;

ũ ∈ [H3(Ω̃h)]2 and p̃ ∈ H2(Ω̃h).

Then as long as h is small enough, for a certain mesh-independent constant C̃(ũ, p̃) it holds :

[|u− uh|21,h+ ‖ p− ph ‖20h ]1/2 ≤ C̃(ũ, p̃)h2. (4)

Remark 1 The construction of ũ and p̃ can be accomplished in many ways, for example as advocated
in [19].
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2.2 Approximation by the conforming Crouzeix-Raviart element
In this case the discrete spaces are defined as follows.
For the pressure we first introduce the space

Rh := {q| q|T ∈ P1 ∀T ∈ Th}.

As for the velocity we first denote by ϕT the cubic (bubble) function that vanishes on the three edges
of T ∈ T , extended by zero outside T . Further T being a triangle in Sh we denote by ψT the cubic
function defined in T that vanishes on the two edges of T not lying on Γh and whose extension to ∆T

and beyond also vanishes along the line parallel to eT passing through node P ∈ ∆T ∩ Γ of the space
W 2
h . We set ψT identically zero in every T ∈ Th \ Sh.

Now we introduce the spaces,

Ψh := {ψ| ψ|T = span[ψT ]∀T ∈ Sh},

Φh := {ϕ| ϕ|T = span[ϕT ]∀T ∈ Th} and

Φ̃h := {ϕ| ϕ|T = span[ϕT ] ∀T ∈ Th \ Sh}.

The finite-element analog (3) of (1) for the conforming Crouzeix-Raviart element in the case of curved
domains is defined by means of the following choice of discrete spaces :

Wh := [W 2
h ⊕Ψh ⊕ Φ̃h]2;

Vh := [V 2
h ⊕ Φh]2;

Qh := Rh ∩ L2
0(Ωh).

Error estimates qualitatively equivalent to (4) hold for the resulting approximate problem under the same
assumptions as in Theorem 1.

2.3 Mean-square error estimates for the velocity
If we require a little more regularity from both the velocity and the pressure we can assert that an error
estimate in terms of h3 holds for the velocity in the norm ‖ · ‖0,h. More precisely such an estimate is
obtained under the assumption that u ∈ [H3.5+ε(Ω)]2 and p ∈ H2.5+ε(Ω) where ε is a strictly positive
real number arbitrarily small. The proof of this error estimate is a rather straightforward variant of the
very lengthy proof of an equivalent estimate for the scalar Poisson problem given in [12]. Details will be
supplied in a forthcoming paper. In this work we confine ourselves to their numerical validation provided
in the next section among other experiments.

3 Numerical experiments
The primary aim of this section is the numerical validation of the theoretical predictions of the previous
section for two well established mixed methods to solve the incompressible Navier-Stokes equations
combined with our technique to handle Dirichlet velocity boundary conditions prescribed on curvilinear
boundaries. We also compare it with their corresponding parametric versions in terms of accuracy. In
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order to enable a fair comparison we solved only toy problems governed by the Stokes system (1) with
known exact solution.
As far as the Taylor-Hood method is concerned most of the numerical results given in this section are
borrowed from [16].
In our computations the pressure vanishes at a given point and do not satisfy the zero integral condition.
In the tables that follow the acronym OCR stands for observed convergence rate.

3.1 Test-problem 1
To begin with we solve (1) with a manufactured solution corresponding to the following data : Ω is the
unit disk (centered at the origin), f = (8, 8)(x− y), and g ≡ −→0 . Prescribing p(

√
2/2,
√

2/2) = 0, the
exact solution has polynomial expressions, namely u = (y,−x)(1− x2 − y2) and p = x2 − y2.
We use a quasi-uniform family of meshes constructed as prescribed in [16] for the whole disk, parame-
trized by an integer n, consisting of 8n2 triangles, each mesh being symmetric with respect to the axes
x = 0 and y = 0, for n = 2m withm = 1, 2, 3, 4. In this way we can take h = 1/n.
In the tables below the notations ũh and p̃h are employed to represent the velocity and pressure obtained
by the quadratic parametric approach for the velocity, which is isoparametric in the case of the Taylor-
Hood method and subparametric in the case of the Crouzeix-Raviart method. We display in Tables 1
and 2 the velocity errors in the norms | · |1,h and | · |0,h and the pressure errors in the norm ‖ · ‖0,h
for the Taylor-Hood and the Crouzeix-Raviart method, respectively, combined with our technique and
the quadratic parametric approach for the velocity. As one can see, these results completely validate the
analysis carried out in the previous sections.

As one can observe from Tables 1 and 2 the new approach is more accurate than the parametric approach
in all respects.

Remark 2 It is noteworthy that according to Tables 1 and 2, the Taylor-Hood method appears to be
roughly as accurate as the Crouzeix-Raviart method, as far as the velocity is concerned. On the other
hand the pressure is significantly better approximated with the former for finer meshes. This fact is in
contradiction with observations made by other authors (see e.g. [9]) for rectangular domains. However
we should clarify that the bubble functions were not taken into account in the computation of velocity er-
rors, which certainly increases them, though keeping the orders intact. Nevertheless since this procedure
does not affect the pressure our experiments seem to indicate that for curved domains the Taylor-Hood
method tend to perform better than the Crouzeix-Raviart method, as far as this field is concerned. But
of course much more experimentation is necessary to confirm or not such a conclusion.

M Є Γh    

OT 

P Є Γ 

M Є Γh  

P Є Γ 

OT T  Ȼ  Ω 

T  C  Ω 

Figure 1 – Construction of nodes P ∈ Γ for spaceWh related to Lagrange nodesM ∈ Γh for k = 3
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Table 1 – Errors for the Taylor-Hood method combined with the new and the parametric approach
2n −→ 4 8 16 32 OCR

|uh − u|1,h −→ 0.1308×10−0 0.3585×10−1 0.8833×10−2 0.2157×10−2 O(h2)

|ũh − u|1,h −→ 0.1554×10−0 0.3938×10−1 0.9321×10−2 0.2222×10−2 O(h2)

|uh − u|0,h −→ 0.8633×10−2 0.1211×10−2 0.1446×10−3 0.1717×10−4 O(h3)

|ũh − u|0,h −→ 0.9726×10−2 0.1308×10−2 0.1522×10−3 0.1770×10−4 O(h3)

‖ ph − p ‖0,h −→ 0.1709×10−0 0.4266×10−1 0.1047×10−1 0.2567×10−2 O(h2)

‖ p̃h − p ‖0,h −→ 0.1920×10−0 0.4508×10−1 0.1077×10−1 0.2604×10−2 O(h2)

Table 2 – Errors for the Crouzeix-Raviart method combined with the new and the parametric approach
2n −→ 8 16 32 64 OCR

|uh − u|1,h −→ 0.1238×10−0 0.3292×10−1 0.8659×10−2 0.2216×10−2 O(h2)

|ũh − u|1,h −→ 0.1515×10−0 0.3666×10−1 0.9152×10−2 0.2280×10−2 O(h2)

|uh − u|0,h −→ 0.8567×10−2 0.1056×10−2 0.1360×10−3 0.1732×10−4 O(h3)

|ũh − u|0,h −→ 0.1047×10−1 0.1201×10−2 0.1458×10−3 0.1796×10−4 O(h3)

‖ ph − p ‖0,h −→ 0.1675×10−0 0.4048×10−1 0.1072×10−1 0.3182×10−2 O(h≈2)

‖ p̃h − p ‖0,h −→ 0.1825×10−0 0.4294×10−1 0.1109×10−1 0.3232×10−2 O(h≈2)

3.2 Test-problem 2
In order to check our method’s performance in a more physical context we used it to solve a problem
related to circular Couette flow of a viscous incompressible fluid with density ρ, in a region comprised
between two concentric cylinders. The inner cylinder of radius ri rotates with angular velocity ω while
the outer cylinder with radius re is kept fixed. This flow is governed by the stationary Navier-Stokes equa-
tions with a zero body-force right hand side. As long as the Reynolds number is sufficiently low, the flow
is laminar and the solution to the problem is given by u = (sinθ,−cosθ)uθ(r)where uθ(r) = ωr2

i (r
2
e−

r2)/[r(re2− ri2)] and p(r) = ρω2r4
i /(r

2
e − r2

i )
2[r2/2− r4

e/(2r
2)− 2r2

e log(r)] + c, c being a constant.
If we enforce zero pressure on the outer wall, then c takes the value 2r2

e log(re)ρω
2r4
i /(r

2
e − r2

i )
2.

Although there is no particular difficulty to solve the Navier-Stokes equations with our method, in order
to focus on our essentially validating goal, we apply it to a modified problem, in which the exact inertia
term ρ[grad u]u with a minus sign is input as right hand side datum f . Of course the pair (u, p) is still
the solution to the resulting Stokes system (1) in the annulus Ω with inner radius ri and outer radius re.
The datum g in turn equals −→0 for r = re, while its value for r = ri conforms to the given azimuthal
velocity riω and a zero radial velocity.
Taking re = 1, ri = 0.5, ω = 1 and ρ = 1, we proceeded to the numerical solution of thus defined
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(pseudo) circular Couette flow problem with the Taylor-Hood and the Crouzeix-Raviart method combi-
ned with our technique to approximate the boundary conditions. In order to avoid non physical boundary
conditions, computations were carried out for the whole annulus. With this aim we used again (2n×2n)
symmetric meshes, for n = 2m, with m = 2, 3, 4, 5, constructed in the same way as in the previous
subsection, except for the fact that now the elements inside the disk with radius ri were disregarded.
This yields meshes consisting of 6n2 triangles, with h = 1/n. At numerical level a zero pressure value
is enforced at the point(

√
2/2,
√

2/2) for both methods.
We display in Table 3 (resp. 4) the velocity errors measured in the norms | · |1,h and ‖ · ‖0,h, together
with the pressure errors measured in the ‖ · ‖0,h-norm, for the Taylor-Hood (resp. Crouzeix-Raviart)
method in formulation (3). Results with the parametric technique are commented but not exhibited.
From both tables we observe that the velocity errors in the H1-semi-norm and in the L2-norm are in
perfect agreement with the theoretical predictions. Moreover here the Taylor-Hood element behaves un-
doubtedly better than the Crouzeix-Raviart element, at least when the bubble functions are neglected in
the error computations. On the other handwe note that the pressure errors for the Taylor-Hoodmethod de-
crease at a rate faster than theO(h2) observed for the Test-problem 1. However for the Crouzeix-Raviart
method the latter errors decrease only at a rate close to O(h3/2). This reveals an amplification of the
effects pointed out in Remark 2 with respect to pressure errors, in the framework of flow simulations in
curved domains. In principle such results contradict our theoretical predictions for the Crouzeix-Raviart
method. Thus the author intends to further investigate this issue in future work. Incidentally such a pres-
sure downgrade effect is also observed for the parametric version of the Crouzeix-Raviart method, while
the aforementioned pressure upgrade effect for the Taylor-Hood element does not occur in computations
using the isoparametric technique. Taking into account that in this example too the approximation of the
velocity with the new procedure is of comparable accuracy with its parametric approximation for both
methods, we can assert that here again the former showed to be superior to the latter.

Table 3 – Errors for the Taylor-Hood method combined with formulation (3)
2n −→ 8 16 32 64 OCR

|uh − u|1,h −→ 0.1592×10−0 0.4261×10−1 0.1090×10−1 0.2741×10−2 O(h2)

‖ uh − u ‖0,h −→ 0.3833×10−2 0.5339×10−3 0.6923×10−4 0.8744×10−5 O(h3)

‖ ph − p ‖0,h −→ 0.1209×10−0 0.2095×10−1 0.3952×10−2 0.6638×10−3 O(h≈2.5)

Table 4 – Errors for the Crouzeix-Raviart method combined with formulation (3)
2n −→ 8 16 32 64 OCR

|uh − u|1,h −→ 0.1903×10−0 0.5433×10−1 0.1431×10−1 0.3508×10−2 O(h2)

‖ uh − u ‖0,h −→ 0.6372×10−2 0.9448×10−3 0.1229×10−3 0.1456×10−4 O(h3)

‖ ph − p ‖0,h −→ 0.2814×10−0 0.1177×10−0 0.4824×10−1 0.1727×10−1 O(h≈1.5)
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