Comportement vibratoire d'une poutre encastre sous différentes conditions d'appui à l'extrémité

A .Abderrachid ^a, EL. Abdelouafi ^b

a. Ecole Nationale des Sciences Appliquées Al Hoceima, abderrachid.afras@gmail.com

b. Ecole Nationale des Sciences Appliquées Al Hoceima, e.abdelouafi@hotmail.fr

Equipe de recherche : Modélisation, Optimisation et Dynamique des Structures en Génie Civil (MODSGC)

Résumé :

L'utilisation des nouveaux systèmes non-classiques aux extrémités des poutres est devenue une pratique de plus en plus courante, l'analyse vibratoire de ces structures est importante et nécessaire dans la conception et dimensionnement de nombreux ouvrages en génie civil, aéronautique et Robotique structure. Ce document présent l'étude analytique de la réponse vibratoire d'une poutre encastrée en acier reposant sur différent type d'appui a l'extrémité, ce problème traité par l'approche d'Euler-Bernoulli et en utilisant les conditions aux limites classique et non-classique, les équations différentielles qui régissant sur chaque système, les modes propre et les fréquences fondamental sera déterminé.

Abstract:

The non-classical boundary condition at the ends of beams has become an increasingly common practice. The vibration analysis of these structures is important and necessary in the design and dimensional, in civil engineering, aeronautics structure and robotic,

This paper presents the analytical study of the vibratory response of a steel embedded beam resting on different types of support at the end, this problem solve by the Euler-Bernoulli approach and using the classical boundary conditions and non-classical, the differential equations that govern on each system, the modes and the fundamental frequencies will be determined.

Mots clefs : Poutre, vibration, theorie Euler-Bernoulli, condition aux limites, mode propre, fréquence propre

1-Introduction

Les vibrations transversales d'une poutre encastre ont été étudié par plusieurs chercheurs en ingénierie,

[1] S.I. Alvarez G. M.Ficcadenti de Iglesias P.A.A. Laura, ont étudié une poutre encastre non-uniforme attaché à l'extrémité par une mass avec position variable du système ressort linéaire et en rotation par Approche de Rayleigh-Ritz. [2] M.Gurgoze, traité le système mass ressort a la pointe d'une poutre par la méthode de Lagrange. [3] Zhou, trouvé les solutions des expressions pour les fréquences et les modes propre d'une poutre encastre, avec support élastique et une masse très lourde a la pointe.

[4] Seon M. Han, Haym Benaroya, Timothy Wei,ont etudié une poutre encastre-libre par quatre théories Euler – Bernoulli, Rayleigh, Shear et Timoshenko, [5] BinghuiWang, Zhihua Wang, and Xi Zuo, ont développé une solution approximative d'une poutre encastre attaché par une masse en considérant le moment rotatif d'inertie généré par la masse supplémentaire.

2- Rappel théorique :

L'équation différentielle du mouvement pour la vibration d'une poutre d'Euler-Bernoulli est donnée par :

$$EI\frac{\partial^4 y(x,t)}{\partial x^4} = \rho A \frac{\partial^2 y(x,t)}{\partial^2 t} \quad (1)$$

Où

A : L'aire de la section transversale,

I : Le moment d'inertie de la section transversale,

E : Le module d'élasticité,

 ρ : La masse volumique

y(x,t): déplacement du a la flexion à la position axiale x et à l'instant t.

La résolution de cette équation se fait en effectuant une séparation de variable en posant l'hypothèse que la solution prendra la forme :

$$y(x,t) = W(x)q(t) \qquad (2)$$

Avec

W (x) : appelé mode normal ou fonction caractéristique du faisceau.

Par conséquent, l'Eq. (1) est écrit comme :

$$-\frac{1}{q(t)}\frac{\partial^2 q}{\partial t^2} = c^2 \frac{1}{W(x)}\frac{\partial^4 W(x)}{\partial x^4} = \omega^2 \quad (3) \text{ Avec } c = \sqrt{EI/\rho A}$$

A partir de l'equation precedent on obtient 2 equations suivant :

$$\frac{dW(x)^4}{dx^4} - \beta^2 W(x) = 0 \quad (4); \ \beta = \sqrt{\omega/c}$$
$$\frac{dq(t)^4}{dt^4} + \omega^2 q(t) = 0 \quad (5)$$

 $\boldsymbol{\omega}$: déduire les fréquences propres.

 β : est la valeur propre du mode normal W (x).

En déduire les fréquences propres en fonction des β_n déterminés ci-haut :

$$\omega_n = \beta_n^2 c = \beta_n^2 \sqrt{\frac{EI}{\rho A}} \qquad (6)$$

La solution générale de l'équation (4) s'écrit sous la forme :

$$W(x) = A_1 \sin(\beta x) + A_2 \cos(\beta x) + A_3 \sinh(\beta x) + A_4 \cosh(\beta x)$$
(7)

Pour les constantes A_1 à A_4 sont déterminés à partir des conditions aux limites.

3-Présentation de Problème

Comme il a été mentionné précédemment, dans cette étude, un modèle de poutre avec supports élastiques en extrémité qui est couplé par un système masse-ressort linéaire-ressort rotationnel, la figure 1 illustre ce système mécanique.

Chacune des conditions aux limites (tab.1) fournit deux équations nécessaires pour déterminer les constantes inconnues A_1 à A_4 et les valeurs β de dans Eq. (7). Ils sont généralement classés en deux

groupes: les limites classique et non classique. Les conditions aux limites classiques sont les plus courantes dans l'analyse des vibrations dans les poutres et sont généralement classées en extrémités libres (appui simple, encastre, libre, articulé)

Conditions aux limites non classiques sont moins courantes, mais leur importance est identique à celle des conditions classiques (ressort linéaire, ressort de torsion, masse ; amortisseur).

Cas	Condition aux limites	Equation	Model
1	ressort linéaire	$EI \frac{\partial y(x,t)}{\partial x} = K_L y(x,t)$	KL
2	ressort rotationnel	$EI\frac{\partial y(x,t)}{\partial x} = K_T \frac{\partial y(x,t)}{\partial x}$	−−− V K
3	Masse	$EI\frac{\partial^2 y(x,t)}{\partial x^2} = M\frac{\partial^2 y(x,t)}{\partial t^2}$	M

Tab 1: Non-classique condition aux limites

Au niveau d'encastrement (x=0) on a :

Fleche nulle : W(x) = 0;

Rotation nulle : $\frac{dW(x)}{dx} = 0$

En appliquant ces conditions aux limites on obtient $A_2 = -A_4$; $A_1 = -A_3$; Eq. 7 réduit à:

$$W(x) = A_1(\sin(x) - \sinh(x)) + A_2(\cos(x) - \cosh(x))$$
 (8)

Au niveau de l'extrémité (x=L) on a :

Effort Tranchant de système :
$$EI\frac{\partial^3 y(x,t)}{\partial^3 x} = K_L y(x,t) + M \frac{\partial^2 y(x,t)}{\partial^2 t}$$
(9)

Moment fléchissant de système :
$$EI \frac{\partial^3 y(x,t)}{\partial^3 x} = K_T \frac{\partial y(x,t)}{\partial x}$$
 (10)

En appliquant ces conditions aux limites dans l' Eq. 2 on obtient :

 $A_{1}((K_{L} - M\omega^{2})(\sin(\beta l) - \sinh(\beta l)) - EI\beta^{3}(\cos(\beta l) - \cosh(\beta l)) + A_{2}((K_{L} - m\omega^{2})(\cos(\beta l) - \cosh(\beta l)) - EI\beta^{3}(\sin(\beta l) - \sinh(\beta l)) = 0$ $A_{1}(-EI\beta^{2}(\sin(\beta l) + \sinh(\beta l) - K_{T}\beta(\cos(\beta l) - \cosh(\beta l)) - A_{2}(EI\beta^{2}(\cos(\beta l) + \cosh(\beta l)) + K_{T}\beta(\sin(\beta l) + \sinh(\beta l)) = 0$ (11)

 $\begin{pmatrix} (K_L - M\omega^2)(\sin(\beta l) - \sinh(\beta l)) - EI\beta^3(\cos(\beta l) - \cosh(\beta l)) & (K_L - M\omega^2)(\cos(\beta l) - \cosh(\beta l)) - EI\beta^3(\sin(\beta l) - \sinh(\beta l)) \\ - EI\beta^2(\sin(\beta l) + \sinh(\beta l) - K_T\beta(\cos(\beta l) - \cosh(\beta l))) & - EI\beta^2(\cos(\beta l) + \cosh(\beta l)) + K_T\beta(\sin(\beta l) + \sinh(\beta l))) \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} (12)$

Le déterminant de la matrice précédente représente l'équation de la fréquence de système étudié, ensuite en déduire les équations de fréquence des systèmes sont également obtenus à partir de l'expression générale en utilisant des processus limitants et les conditions au limite citée dans le Tab 2.

On note R = M / m, le rapport de masse attaché et la masse de poutre.

Condition aux limites
1-un ressort linéaire, rotationnel et masse fixé à l'extrémité
2-un ressort linéaire et rotationnel fixé à l'extrémité (R=0)
3-un ressort rotationnel et masse fixé à l'extrémité ($K_L=0$)
4-un ressort Linéaire et masse fixé à l'extrémité (K _T =0)
5-un ressort rotationnel fixé à l'extrémité (R=0,K _L =0)
6-un ressort Linéaire fixé à l'extrémité (R=0, K _T =0)
7-masse fixé à l'extrémité (KL=0 , K _T =0)
8-encastré-libre (R=0, $K_T=0$, $K_T=0$)

Tab 2: Les équations de fréquence

D'après la détermination les équations des fréquences, les équations sont **non-linéaire** pour le résoudre en utilise la méthode de **Newton-Raphson** avec le code de Programmation **MATLAB**, pour trouver les racines des équations.

L(m)	$I(m^4)$	$K_L(N/m)$	K _T (N.m/rad)	b(cm)	h(cm)	E (GPa)	R	ρ (Kg/m ³)
1m	3.125 10-10	1000	1000	3	0.5	200	1.50	7850

Tab 3: Propriété mécanique et géométrique de système

4-Résultats et discutions :

		Cas 1	Cas 2	Cas 3	Cas 4	Cas 5	Cas 6	Cas 7	Cas 8
Mode 1	β_1	2.00218	2.89745	1.67020	1.81734	2.42671	2.85788	1.14644	1.87510
n=1	f_1	4.64834	9.73473	3.23466	3.82969	6.82855	9.47066	1.52402	4.07700
Mode 2	β_2	5.26835	5.74040	5.26726	4.00237	5.71382	4.85558	3.99951	4.69409
n=2	f_2	32.18411	38.2099 6	32.17079	18.57491	37.85693	27.33849	18.54837	25.55024
Modo 3	β_3	8.76164	9.01666	8.76159	7.11359	9.01291	11.00768	7.11341	7.85475
n=3	f_3	89.01498	94.2722 1	89.01396	58.67727	94.19381	140.50245	58.67430	71.54133

Tab 4: Les valeurs Propres et les fréquences propres

D'après l'Eq.12 les expressions de mode propre w(x) est déterminé, pour chaque système, pour les rotations de chaque système est déterminé par le dérivé de mode W(x).

Les trois modes Propres pour chaque cas :

Figure 2 : Les Modes Propre en flexion

Figure 3 : Rotation de poutre pour les 3 valeurs Propres $\beta_{n=1,2,3}$

Cas	K_T	K_L		R=0.5	R=1	R=1.5
			β_1	2.29963	2.08275	1.94096
			f_1	6.13208	5.02998	4.36843
	500	500		5.98844	5.97693	5.97204
			β_2	41 502.42	41 40060	41.25507
			f_2	41.58342	41.42368	41.35597
			ß	9.59408	9.59167	9.59079
CAS 1			$\frac{\rho_3}{f}$	106.73310	106.67963	106.65993
			$\frac{J_3}{B}$	2.40135	2.15774	2.00218
			$\frac{\rho_1}{f}$	668656	5.39871	4.64834
	1000	1000	J_1	5.38743	5.30500	5 26835
	1000	1000	eta_2			5.20055
			f_2	33.65547	32.63351	32.18411
				8.80769	8.78698	8.76164
			β_3	00.05016	00 500 60	00.01.000
			f_3	89.95316	89.53063	89.01498
	1500	1500	β_1	2.5351	2.27505	2.10945
			f_1	7.45216	6.00169	5.15977
			P	5.23874	5.13891	5.09540
			$\frac{\rho_2}{r}$	31 82343	30 62207	30 11719
			J_2	8 / 9028	8 42826	8 /0296
			β_3	0.47020	0.42020	0.40270
			f_3	83.58663	82.40125	81.90729
	2000	2000	β_1	2.65587	2.38301	2.20908
			f_1	8.17910	6.58482	5.65868
			- 1	5.17772	5.06992	5.02361
			β_2			
			f_2	31.08640	29.80542	29.26286
			P	8.35525	8.28257	8.25321
			$\frac{\rho_3}{f}$	80.94896	79.54679	79.01395
	500	-	J ₃ B	2.11954	1 92054	1 79009
	500		$\frac{\rho_1}{f}$	5.20925	4.27699	3.71571
			J_1	5 98820	5 97684	5 97200
			β_2	5.90020	5.57001	5.57200
			f_2	41.58011	41.42249	41.37114
			<u> </u>	9.594073	9.59167	9.59079
			β_3			
CAS 3			f_3	106.73292	106.67958	106.70057
	1000	-	β_1	2.00452	1.80026	1.67020
			f_1	4.65921	3.75805	3.23466
				5.38244	5.30298	5.26726
			β_2			

		f_2	33.59324	32.60863	32.17079
			8.80739	8.77488	8.76159
		$\frac{\beta_3}{f_2}$	89.94705	89.28426	89.01396
	1500 -	<i>J</i> ₃ <i>B</i>	1.97459	1.76990	1.64044
		$\frac{\rho_1}{f_1}$	4.52112	3.6323	3.12042
		<u>J</u>	5.22862	5.13483	5.093224
		β_2			
		f_2	31.70060	30.57350	30.08000
		β_3	8.48930	8.427921	8.40279
		$\frac{f_3}{f_2}$	83.56729	82.36320	81.87283
	2000 -	β_1	1.96081	1.75604	1.62691
		f_1	4.45823	3.57570	3.06915
			5.16251	5.06384	5.02038
		β_2	30,90407	11 87756	20 23688
		J_2	8 35360	8 282005	8 25203
		β_3	8.55500	8.282005	0.23295
		f_3	80.91715	79.56626	79.00859
	- 500	β_1	1.96081	1.72558	1.52567
		f_1	4.45823	3.45276	2.70009
		B	4.11932	4.03395	4.00091
		$\frac{\rho_2}{f_2}$	19.67629	18.86921	18.56844
		52	7.19096	7.13431	7.11350
		β_3			
		f_3	59.96065	59.01976	58.69818
	- 1000	β_1	2.24288	1.97672	1.81734
		f_1	5.83316	4.53088	3.82969
		ß	4.12810	4.03690	4.00237
		$\frac{\rho_2}{f}$	19.7603	18.8968	18.57491
CAS 4		<i>J</i> ₂	7.19159	7.13450	7 11359
		β_{3}	,,	112.000	1.11557
		f_3	59.97121	59.02288	58.67727
	- 1500	β_1	2.443	2.15651	1.98344
		f_1	6.92052	5.39256	4.56173
		B	4.13754	4.04000	4.003878
		$\frac{\rho_2}{f}$	19.850	18.92584	18.58891
		J 2	7.19223	7.13469	7.11368
		β_3	-		
		f_3	59.98187	59.02601	58.67885

-	2000	β_1	2.60011	2.29914	2.11553
		f_1	7.83927	6.12947	5.18956
			4.14767	3.93766	4.00544
		β_2			
		f_2	19.94806	17.97920	18.603447
			7.19288	7.08156	7.113775
		β_3			
		f_3	59.99264	58.15006	58.68033
		β_1	1.41996	1.24791	1.14644
-	-	f_1	2.33801	1.80575	1.52403
CAS 7			4.11113	4.03113	3.99951
		β_2			
		f_2	19.59816	18.84290	18.548387
			7.19033	7.13413	7.11341
		β_3			
		f_3	59.95019	59.01665	58.67444

	K_T	K_{L}	Valeur Propre $oldsymbol{eta}_1$, fréquence propre f_1
			β_1 1.66868
			f_1 3.228779
	500	500	β_2 2.62060
			<i>f</i> ₂ 7.963329
			β_3 6.04991
			f ₃ 42.44154
			β_1 1.76388
			f_1 3.60769
CAS 2	1000	1000	β_2 2.78414
			f ₂ 8.98826
			β_3 5.74138
			<i>f</i> ₃ 38.22313
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β_1 1.80092
			f_1 3.76080
	1500		β_2 2.95347
			f ₂ 10.11482
			β_3 5.68467
			<i>f</i> ₃ 37.47171
			β_1 1.81984
			f_1 3.84024
	2000	2000	β ₂ 3.10203
			f ₂ 11.15795
			β ₃ 5.67429

Tab.6 les Valeur Propre et fréquence Propre

				27 22501
			f_3	37.33501
			β_1	2.5068
			f_1	7.28671
	500	-	β_2	6.04725
			f_2	42.40422
			β_3	9.62502
			f_3	107.42266
			β_1	2.42671
			f_1	6.82854
	1000	-	eta_2	5.71382
CAS 5			f_2	37.85700
			β_3	9.01291
			f_3	94.19401
			β_1	2.40444
			f_1	6.70378
	1500	_	β_2	5.63127
	1300	_	f_2	36.77103
			β_3	8.86196
			f_3	91.06518
			β_1	2.39398
	2000		f_1	6.64558
		_	β_2	5.63127
			f_2	36.77103
			β_3	8.86196
			f_3	91.06518
			β_1	2.54374
			f_1	7.50304
		500	β_2	4.77343
	-	500	f_2	26.4212
			β_3	11.00158
			f_3	140.34689
			β_1	2.85788
		1000	f_1	9.47066
	-	1000	β_2	4.85558
CAS 6			f_2	27.33849
			β_3	11.00768
			f_3	140.50245
-			β_1	3.05798
			f_1	10.84330
	-	1500	β_2	4.93885
			f_2	28.28426

			β_{3}	11.01383
			β_1	3.19882
		••••	f_1	11.86964
	-	2000	β_2	5.02173
			f_2	29.24146
			β_3	11.02003
			f_3	140.8179694
-				

Les résultats

ci-dessus la réponse vibration

défini clairement l'influence de type d'appui (condition aux limites) sur d'une poutre encastré :

cas	paramètre	Fréquence Propre
1	K _L K _T , R 🖊	*
2	K_{L}, K_{T}, \checkmark	
3	K _T , R 🗡	
4	K _L , R 🗡	
5	K _T	\searrow
6	K _L	*
7	R 🗡	\searrow

Tab.7 Variation de fréquence propre

Les systèmes pour cas 3, 4, 5 et 7 sont des structures où les fréquences propres et les formes de mode peuvent être modifiées de manière significative afin d'éviter résonance et autres phénomènes dynamiques indésirables du point de vue de la stabilité.

5-Conclusions

Dans cet article, l'analyse de vibration d'une poutre encastré reposé sur plusieurs type d'appui a été étudiée analytiquement selon la méthode d'Euler-Bernoulli, l'influence des conditions aux limites non-classique sur la fréquence est bien déterminées, de plus, Les différentes équations de mouvement et les équations caractéristiques des fréquences ont été déduire et résolus.

6-References

[1] S.I. Alvarez G. M.Ficcadenti de Iglesias P.A.A. Laura Journal of Sound and Vibration, Vibrations of an elastically restrained non-uniform beam with translational and rotational springs and with a tip mass 1988.

[2] M.Gurgoze, "On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system," Journal of Sound and Vibration, vol. 190, no. 2, pp. 149–162, 1996.

- [3] Zhou, "The vibrations of a cantilever beam carrying a heavy tip mass with elastic supports,
- "J. Sound Vibration, Vol. 206, No. 2, pp. 275–279 (1997).
- [4] Seon M. Han, Haym Benaroya, Timothy Wei, Chapter 5; and S. M. Han, H. Benaroya, and T. Wei,

"Dynamics of Transversely Vibrating Beams Using Four Engineering Theories," J. Sound Vibration,

Vol. 225, No. 5, pp. 935–988 (1999).

[5] BinghuiWang, Zhihua Wang, and Xi Zuo Frequency Equation of Flexural Vibrating Cantilever Beam Considering the Rotary Inertial Moment of an Attached Mass Mathematical Problems in Engineering 2016.

- [6] L. Meirovitch, Elements of vibration analysis, McGraw-Hill, New York, (1986).
- [7] J.P. Den Hartog-Mechanical Vibrations-Crastre Press (2008).