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Résumé :

Cette communication concerne l’étude de la résolution de l’équation d’advection avec la Méthode

Asymptotique Numérique. Cette équation doit être résolue lorsqu’une formulation Arbitraire Lagran-

gien Eulérien est utilisée pour résoudre un problème incluant de la plasticité par exemple.

Abstract :

This communication is devoted to the resolution of the advection equation with the Asymptotic Numeri-

cal Method. This equation has to be solved when an Arbitrary Lagrangian Eulerian formulation is used

to solve a forming problem including for instance plasticity.
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1 Introduction

In the manufacturing processes of metallic sheets, such as levelling, the sheet is deformed by a succes-

sion of rollers. This kind of process implies contact with friction and elasto-plasticity. To have accurate

results in the context of the finite element method, it is necessary to have a fine mesh in the contact

zones. As the metallic sheets are conveyed along the production line, each material point of the surface

enters into contact with rollers during the process. If classical lagrangian formulations are used, it im-

plies that the mesh needs to be fine all along the sheet. Consequently, the computational time becomes

very important. This problem can be handled by using an ALE formulation : the mesh is nor fixed to

the material domain neither fixed in space like in Eulerian formulations. A lot of examples are available

in the literature concerning the ALE formulation for such problems.

Another challenge is to solve the non-linear equations (contact, plasticity). We propose here to handle

the involved nonlinearities with a high order continuation procedure based on the Asymptotic Nume-

rical Method (ANM) [1]. At each step of the continuation procedure, the variables of the problem

are represented by truncated power series whose terms are solutions of a series of well-posed linear
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problems having the same tangent matrix. A software called Manitoo has been developed within this

framework and is described in [2].

ALE formulations imply that time derivatives of state variables can not be computed like in Lagrangian

computations and a convective term has to be added to the time derivatives as it is classically done

in Eulerian computations in fluid mechanics. For instance, the time derivative of the deformation in a

given direction ε̇ becomes :
Dε

Dt
=

∂ε

∂t
+ ~V · ~gradε (1)

where the left-hand side is the particular derivative whereas the left-hanside contains the derivative of

the deformation in the ALE domain plus a convective term. The term V is the the difference between

the velocity of the particule and the velocity of the ALE mesh. Equation 1 is known as the "advec-

tion equation". Many studies have been carried out on this topic in the framework of ALE formulation

for solid mechanics [3]. Classically two methods are proposed to add this convective effects to the FE

codes. The first one is the strong coupling method which consists in solving the real equations including

these convective terms. The second one is the weak coupling method : first a lagrangian computation is

performed and then a convective phase brings a correction to the results of the lagragian phase.

In the context of ANM, the two methods can be considered. Nevertheless, the methods used to consider

the convective terms are very different. With the weak coupling, the various methods developed can be

directly used between each branch independently from the ANM context. If we use the strong coupling

method, the advection equation has to be included in the constitutive law and solved with the ANM.

This is the subject of this paper.

2 Comparison of different schemes for the advection equation in

the ANM context

In order to study the accuracy of different schemes to solve the advection equation, let us consider the

1D advection equation :
∂u

∂t
+ c

∂u

∂x
= 0 (2)

In the context of the ANM, a unknown u is developed in a power series

u (t)− u0 =

n
∑

i=1

uit
i (3)

where t is taken as the physical time. Consequently, Equation (2) becomes at order p :

(p+ 1)up+1 + c
∂up
∂x

= 0 (4)

Now, we will consider different finite difference schemes for the spatial derivative to solve this equation.

We can notice that no choice has to be done for the time discretization. In what follows, we consider

that x ∈ [0; 1]. This domain is discretized with Np = 201 nodes with a constant step ∆x. In order to test

the performance of the schemes, we will apply this equation to the transport of the continuous function

and the rectangular function presented in figures 1 and 2. The considered function gives the values of

uj0 = u0(xj). Periodic boundary conditions are applied : u(0) = u(1). The computation is performed
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with c = 1 up to t = 1 s so that the function is supposed to have completed exactly one "lap".
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FIGURE 1 – Smooth function
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FIGURE 2 – Rectangular function

2.1 Central scheme

First, let us consider the central derivative

(

∂up
∂x

)j

p

=
uj+1
p − uj−1

p

2∆x
(5)
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FIGURE 3 – Central : Smooth function

(90 steps)
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FIGURE 4 – Central : Rectangular function

(134 steps)

We find the classical behaviour obtained in usual finite difference computations : the smooth functions

are well transported (Fig 3) whereas the transport of discontinuous functions exhibits oscillations (Fig

4).

2.2 Upwind scheme

Classically, we try to use an "upwind" scheme to handle this problem. This corresponds to :

(

∂up
∂x

)j

p

=
ujp − uj−1

p

∆x
(6)
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FIGURE 5 – Upwind : Smooth function

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t=0

t=1

FIGURE 6 – Upwind : Rectangular function

The transport of the rectangular function is better (Fig. 6) but the transport of the smooth function is

done with an important diffusion (5). The maximum of the function has decreased by 30%.

2.3 Fromm scheme

To improve the accuraty of the previous scheme, one has to increase the order of the scheme. For

classical finite difference approximations, the Lax-Wendroff scheme is often considered. In the ANM

context, this scheme can not be used because of the particular treatment of time t in the power series

(3). Consequently, we consider the second order scheme of Fromm [4]. From the Taylor expansion of

the unknown u, one gets :
(

∂u

∂x

)j

p

=
ujp − uj−1

p

∆x
+

∆x

2

(

∂2u

∂x2

)j

p

(7)

The Froom scheme consists in taking for the second order derivative the mean between the central

second order derivatives in j and j − 1. This leads to :

(

∂up
∂x

)j

p

=
uj+1
p + 3ujp − 5uj−1

p + uj−2
p

4∆x
(8)
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FIGURE 7 – Fromm : Smooth function

(46 steps)
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FIGURE 8 – Fromm : Rectangular function

(90 steps)

The results are much better, really close for the transport of the smooth function (Fig. 7) and also for

the transport of the rectangular function where the are small oscillations near the singularities (Fig. 8).
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3 Applications

3.1 Model problem

We consider the following model problem : in two parts of the segment [0; 1], we impose a non-zero

plastic strain rate ε̇p (see Fig. 9). It could correspond to the plasticity induced by 2 rollers on a metallic

sheet during leveling. We want to find the plastic deformation ε̂p in the ALE configuration considering

that all the points are moving at the velocity c = 1 m/s.
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FIGURE 9 – Model problem : prescribed plastic

strain rate
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FIGURE 10 – Comparison of ε̂p for a non-uniform

mesh of 91 points

Considering the convective terms, the following transport equation has to be solved :

ε̇p = ˙̂εp + c
∂ε̂p

∂x
(9)

In the ANM context, at the order n, it leads to

ε̂p(n+1) = εp(n+1) −
c

n+ 1

(

∂ε̂p

∂x

)

n

(10)

One of the advantages of ALE for the modelling of levelling is that the mesh can only be refined in

the areas in contact with the rollers since the points in contact are nearly the same in the ALE domain

during the whole simulation. We now test the different methods to solve the model problem with a

non-uniform mesh. The mesh is coarse (0.05) where ε̇p = 0 whereas it is finer (0.005) where ε̇p 6= 0.

The central scheme shows oscillations with this non-uniform mesh (Fig. 10). The two other methods

are quite similar even if the Fromm scheme finds a better approximation of the second plateau.

3.2 Coupling with the incremental plasticity equations

We can couple now the previous work with the incremental plasticity equations developed in the ANM

framework [5]. Instead of giving the plastic strain rate, we now impose the strain rate and search for the

plastic strain over the domain.
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FIGURE 11 – Model problem : prescribed total

stain rate
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FIGURE 12 – ε̂p obtained with the Fromm scheme

4 Coupling with Finite Element

We want to study the 2D example presented in Fig. 13. The 2D solid moves in the x-direction whereas

a distributed force is applied at a constant x-position. Incremental plasticity is considered. 
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FIGURE 13 – 2D FE problem considered

The convective terms only appear in the constitutive law which is used at the Gauss points of the

elements. The mesh used is structured so that we can create lines of Gauss points in the x-direction.

Taking a null mesh velocity in x-direction, we have an ALE velocity only in the x-direction and we can

apply the schemes presented in the previous sections. The last results will be presented.
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