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Abstract :

The paper deals with homogenization of reactive immiscible incompressible two-phase flow in double
porosity media. The mathematical model is given by a coupled system of two-phase flow equations under
isothermal condition. The model consists of the usual equations derived from the mass conservation of
both fluids along with the Darcy-Muskat and the capillary pressure laws along with the additional source
terms corresponding to the chemical reactions in the reservoir. The medium is made of two superimposed
continua, a connected fracture system and an ε-periodic system of disjoint matrix blocks. We assume that
the permeability of the fissures is of order one, while the permeability of the blocks is of order ε2. We
derive the global behavior of the model by passing to the limit as ε→ 0 and obtain the global model of
the reactive flow. It is shown that the homogenized model can be represented as the usual equations of a
reactive immiscible incompressible two-phase flow except for the addition of new source terms calculated
by a solution to a local problem in the matrix block. These source terms exhibit the nonlocal behavior
of the model with respect to the time variable. The non-locality in time of the reaction source terms in
the case of gas producing reaction can lead to the instability of stationary reaction front propagation in
the porous medium and development of self-oscillations. The results of the numerical simulation of the
reactive immiscible incompressible two-phase flow are presented.

Key words : two-phase flow; chemical reactions ; homogenization ; double
porosity media.

1 Introduction
The homogenization of reactive two-phase flows in porous media is of great interest in view of numerous
applications in geosciences and technologies (see, e.g., [17]). There is an extensive literature on this
subject. We will not attempt a literature review here but will merely mention a few references. Here we
refer, for instance, to [13, 16] and the references therein.

In this paper we consider a more general model than the previous ones. It describes a two-phase flow in
double porosity media with chemically active skeleton. The chemical reaction between a solid reactant
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and one dissolved in the wetting liquid is accompanied by production of non-wetting (gas) phase. Na-
turally fractured reservoirs can be modeled by two-superimposed continua, a connected fracture system
and a system of topologically disconnected matrix blocks. The fracture system has a low storage capa-
city and high a conductivity, while the matrix block system has a conductivity that is low in comparison
to that in the fractures. The majority of fluid transport will occur along flow paths through the fissure
system, and the relative volume and storage capacity of the porous matrix is much larger than that of the
fissure system. When the system of fissures is so well developed that the matrix is broken into individual
blocks or cells that are isolated from each other, there is consequently no flow directly from cell to cell,
but only an exchange of fluid between each cell and the surrounding fissure system. For more details on
the physical formulation of such problems see, e.g. [21, 25].

The large-scale description will have to incorporate the two different flow mechanisms. For some per-
meability ratios and some fissures width, the large-scale description is achieved by introducing the so-
called double-porosity model. It was introduced first for describing the global behavior of fractured
porous media by Barenblatt et al. [6] and it is since used in a wide range of engineering specialties
related to geohydrology, petroleum reservoir engineering, civil engineering or soil science.

The usual double-porosity model (or ε2-model) assumes that the width of the fracture containing highly
permeable porous media is of the same order as the block size. The related homogenization problem
was first studied in [4], and was then revisited in the mathematical literature by many other authors.
After a series of papers, the notion of double-porosity media was associated mainly to ε2-model. The
appearance of the additional source terms in the homogenized problems is studied in [5]. In this paper we
make use of this normalization. More general notion of double-porosity media was introduced in [21],
where the medium was called as double-porosity when r = r(ε), the ratio between the permeability
of the matrix blocks and the fissures system is such that 0 < r < 1. The ε-periodic double porosity
medium considered in this paper consists of disjoint low permeablematrix blocks and a connected highly
permeable fracture system. The homogenization process is done by passing to the limit as ε → 0. The
global (homogenized) model contains the nonlocal in time additional source terms. Notice that recently,
in the case of two-phase non-reacting flows was studied, for instance, in [1–3, 18, 19, 22, 23] (see also
the references therein).

One of the goals of this paper (in addition to the rigorous justification of the double porosity model) is
to emphasize the connection between the non-locality of sources associated with the response and the
stability of solutions of the initial boundary value problems. Indeed, from a physical point of view, the
manifestation of such non-locality for a systemwith double porosity is due to the presence of a time delay
between the change in the averaged concentrations of the reactants and the averaged reaction rate. This
is typical for the case when the convection of the reagent is carried out in fractures, and the reaction
takes place in the matrix. In the fluxes where the flow of a reactant into the reaction zone depends
on the reaction rate (for example, a reaction with evolution of a gas phase, leading to an increase in
pore pressure), this time delay can lead to the presence of bifurcations of the solution. A mathematical
example is the equation with a retarded argument. Here we can note an experiment on the propagation
of the reaction front during the injection of a reagent into a porous medium with a chemically active
skeleton [26]. In this experiment, the instability of the quasi-stationary propagation of the reaction front
and the development of self-oscillations were observed.

The rest of the paper is organized as follows. In Section 2 a mesoscopic flow model is introduced. Then
in Section 3 we are dealing with the upscaling of the two-phase flow model given in the previous sec-
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tion. The upscaling process is done in the framework of two-scale asymptotic expansions formalism.
The resulting homogenized model is represented as the usual equations of a reactive immiscible incom-
pressible two-phase flow except for the addition of new source terms calculated by a solution to a local
problem in the matrix block. These source terms exhibit the nonlocal behavior of the model with res-
pect to the time variable. In Section 4 the reaction wave propagation accompanied by the production
of the gas phase in the double porosity layer with chemically active matrix is considered. The attention
is focused on the influence of the non-local in time source terms on instability of stationary mode of
reaction front propagation and transition to the self-oscillating mode of the flow under consideration.
Lastly, some concluding remarks are forwarded.

2 Mesoscopic flow model and main assumptions
In this section we formulate the mesoscopic flow equations of the model. We consider a reservoir Ω ⊂
Rd (d = 2, 3) which is assumed to be a bounded, connected domain with a periodic structure. More
precisely, we will scale this periodic structure by a parameter εwhich represents the ratio of the cell size
to the whole region Ω and we assume that ε ↓ 0. Let Y def

= (0, 1)d be a basic cell of a fractured porous
medium. We assume that Y is made up of two homogeneous porous media Ym and Yf corresponding to
the parties of the mesoscopic domain occupied by the matrix block and the fracture, respectively. Thus
Y = Ym ∪ Yf ∪ Γfm, where Γfm denotes the interface between the two media. Let Ωε

` with ` = ”f” or
”m” denotes the open set corresponding to the porous medium with index `. Then Ω = Ωε

m ∪Γεfm ∪Ωε
f ,

where Γεfm
def
= ∂Ωε

f ∩∂Ωε
m∩Ω and the subscripts ”m”, ”f” refer to the matrix and fracture, respectively.

For the sake of simplicity, we assume that Ωε
m ∩ ∂Ω = ∅. We also introduce the notation :

ΩT
def
= Ω× (0, T ), Ωε

`,T
def
= Ωε

` × (0, T ), Σε
T

def
= Γεfm × (0, T ), where T > 0 is fixed. (1)

We notice here that in our starting mesoscopic model the fractures are represented as a porous medium
with rock properties radically different from those of the matrix blocks. In particular, they are not re-
presented as an empty space filled with the fluids. For an example of a numerical simulation over 3D
matrix-fracture structure described here we refer to [12].

Before describing the equations of the model for the nonhomogeneous porous medium Ω with the per-
iodic microstructure, we give the notation for the physical quantities used in the paper. We also define
the porosity function and the global permeability tensor adopted to the fractured-porous medium Ω with
double porosity. We have :

– Φε(x) = Φ(xε ) be the porosity of the reservoir Ω. The function Φε is a Y -periodic defined by :

Φε(x)
def
=

{
Φf in Ωε

f ;

Φm in Ωε
m,

(2)

where the constants 0 < Φf ,Φm < 1 do not depend on ε.
– Kε(x) = K(xε ) be the absolute permeability tensor of Ω. The functionKε is defined by :

Kε(x)
def
=

{
Kf I in Ωε

f ;

ε2Km I in Ωε
m,

(3)

where I is the unit tensor andKf ,Km are positive constants that do not depend on ε.
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– Sε`,w = Sε`,w(x, t), Sε`,n = Sε`,n(x, t) are the saturations of wetting and nonwetting fluids in the
medium Ωε

` , respectively (` = f,m).
– pε`,w = pε`,w(x, t), pε`,n = pε`,n(x, t) are the pressures of wetting and nonwetting fluids in the

medium Ωε
` , respectively (` = f,m).

– f
(`)
w = f

(`)
w (Sε`,w), f (`)

n = f
(`)
n (Sε`,n) are the relative permeabilities of wetting and nonwetting

fluids in the medium Ωε
` , respectively (` = f,m).

– cε` = cε`(x, t) (0 6 cε` 6 1) is the reagent concentration in the wetting phase (` = f,m).
– Mε

` = Mε
`(x, t) is the averaged density of the solid reagent.

– Dε
` = D`(S

ε
`,w) is the diffusion coefficient.

– µw, µn are the viscosities of the wetting and nonwetting fluids, respectively.
– P`,c(S

ε
`,w) is the capillary pressure function given by :

P`,c(S
ε
`,w)

def
= pε`,n − pε`,w with P ′`,c(s) < 0 for all s ∈ [0, 1] and P`,c(1) = 0, (4)

where P ′`,c(s) denotes the derivative of the function P`,c(s).

Nowwe are in position to introduce the flow equations. For the sake of simplicity and brevity, we neglect
the gravity phenomena. The model consists of the usual equations derived from the mass conservation
of both fluids along with the Darcy-Muskat (see, e.g., [7, 10, 11, 15]) and the capillary pressure laws.
The problem is written in terms of the phase formulation, i.e., the saturations, the pressures, and the
concentrations are the primary unknowns.

Mass Balance in Fractures. The flow equations in the fracture system Ωε
f,T read :

Φε(x)
∂Sεf
∂t
− div

{
Kfλ f,w(Sεf )∇pεf,w

}
= Sεf,w;

−Φε(x)
∂Sεf
∂t
− div

{
Kfλ f,n(Sεf )∇pεf,n

}
= Sεf,n;

Φε(x)
∂

∂t

[
Sεf c

ε
f

]
− div

{
Kf c

ε
f λ f,w(Sεf )∇pεf,w + Df(S

ε
f )∇cεf

}
= Sεf,w;

Pf,c(S
ε
f ) = pεf,n − pεf,w.

(5)

Here Sεf
def
= Sεf,w is the wetting fluid saturation in the fissures system (0 6 Sεf 6 1) ; λ f,w(Sεf ) and

λ f,n(Sεf ) := λ f,n(1− Sεf ) stand for the mobilities of the wetting and non-wetting phases given by :

λ f,w(Sεf )
def
=

f
(f)
w

µw
(Sεf ) and λ f,n(Sf)

def
=

f
(f)
n

µn
(Sεf ); (6)

Sεf,w
def
= Cf,w S

ε
f M

ε
f c

ε
f and Sεf,n

def
= Cf,n [1− Sεf ]Mε

f c
ε
f , (7)

where Cf,w,Cf,n are strictly positive constants which does not depend on ε ; the averaged density of the
solid reagentMε

f satisfies the following kinetic equation :
∂Mε

f

∂t
= Sεf,M in Ωε

f,T ;

Mε
f (x, 0) = 1

with Sεf,M
def
= Cf,M S

ε
f M

ε
f c

ε
f , (8)

where Cf,M is a strictly negative constant which does not depend on ε.
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Mass Balance in Matrix Blocks. The flow equations in the fracture system Ωε
m,T read :

Φε(x)
∂Sεm
∂t
− ε2 div

{
Kmλm,w(Sεm)∇pεm,w

}
= Sεm,w;

−Φε(x)
∂Sεm
∂t
− ε2 div

{
Kmλm,n(Sεm)∇pεm,n

}
= Sεm,n;

Φε(x)
∂

∂t

[
Sεm cεm

]
− ε2 div

{
Km cεm λm,w(Sεm)∇pεm,w + Dm(Sεm)∇cεm

}
= Sεm,w;

Pm,c(S
ε
m) = pεm,n − pεm,w.

(9)

Here Sεm
def
= Sεm,w is the wetting fluid saturation in the matrix blocks (0 6 Sεm 6 1) ; λm,w(Sεm) and

λm,n(Sεm) := λm,n(1− Sεm) stand for the mobilities of the wetting and non-wetting phases given by :

λm,w(Sεm)
def
=

f
(m)
w

µw
(Sεm) and λm,n(Sm)

def
=

f
(m)
n

µn
(Sεm); (10)

Sεm,w
def
= Cm,w S

ε
mMε

m cεm and Sεm,n
def
= Cm,n [1− Sεm]Mε

m cεm, (11)

where Cm,w,Cm,n are strictly positive constants which does not depend on ε ; the averaged density of
the solid reagent Mε

m satisfies the following kinetic equation :
∂Mε

m

∂t
= Sεm,M in Ωε

m,T ;

Mε
m(x, 0) = 1

with Sεm,M
def
= Cm,M S

ε
mMε

m cεm, (12)

where Cm,M is a strictly negative constant which does not depend on ε.

Conditions at the Block-Fracture Interface. First, we assume the continuity of the phase fluxes and the
pressures at the interface Σε

T . Namely, we have :
Kfλ f,w(Sεf )∇pεf,w · ν = ε2Kmλm,w(Sεm)∇pεm,w · ν on Σε

T ;

Kfλ f,n(Sεf )∇pεf,n · ν = ε2Kmλm,n(Sεm)∇pεm,n · ν on Σε
T ;

pεf,w = pεm,w and pεf,n = pεm,n on Σε
T ,

(13)

where ν is the unit outer normal vector on Γεfm.

Remark 1. Notice that the continuity of the phase pressures on the interface Σε
T leads to the continuity

of the capillary pressure function, i.e., Pf,c(S
ε
f ) = Pm,c(S

ε
m) on Σε

T . This relation, in particular, implies
the discontinuity of the saturation function on the interface Σε

T .

Now we turn to the interface conditions for the concentration function. We assume the continuity of the
concentration and the corresponding fluxes. Namely, we have : cεf = cεm on Σε

T ;

Df(S
ε
m)∇cεf · ν = ε2 Dm(Sεm)∇cεm · ν on Σε

T ,
(14)

where ν is the unit outer normal vector on Γεfm.
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Remark 2. Notice that relation (13)2 for the flux of the wetting phase pressure along with the relations
(14) imply that {

Kf c
ε
f λ f,w(Sεf )∇pεf,w + Df(S

ε
f )∇cεf

}
· ν =

= ε2
{
Km cεm λm,w(Sεm)∇pεm,w + Dm(Sεm)∇cεm

}
· ν on Σε

T . (15)

Initial Conditions. The initial conditions for the saturation function read :

Sεf (x, 0) = Sinit
f (x) and Sεm(x, 0) = Sinit

m (x). (16)

The corresponding initial conditions for the concentration function have the form :

cεf = cinit
f (x) and cεm = cinit

m (x). (17)

Finally, we notice that our equations along with the interface and initial conditions have to be completed
by the boundary conditions on the external boundary ∂Ω. However, since these conditions play no role
in the homogenization process presented in this paper, then they will be omitted for the sake of brevity.

3 Upscaling of the two-phase flow model (5)- (17)
The outline of the section is as follows. First, in Section 3.1 we present briefly the well known method
of two scale asymptotic expansions see, e.g., [5,8,9,16,19,24]. In Section 3.2 we analyze the equations
(5)1 and (5)2 in the fracture part. Section 3.3 is devoted to the asymptotic analysis of the interface
conditions (13). In Section 3.4 we are dealing with the asymptotic analysis of equations (9)1, (9)2 in the
matrix blocks. Section 3.5 is devoted to the asymptotic analysis of equation (5)3 in fracture part. Then in
Section 3.6 we carry out the asymptotic analysis of the interface conditions (15). Section 3.7 is devoted
to the asymptotic analysis of equations (9)3 in the matrix blocks. In Section 3.8 we establish the chain
of equations, in particular, the homogenized equation (the equation coming from the zero order term
in the formal asymptotic expansion). In Section 3.9, eliminating the corrector functions we obtain the
homogenized equations involving only the zero order terms of the formal asymptotic expansions.

3.1 Two scale asymptotic expansions formalism
In this section, we use the method of two-length-scale asymptotic expansions, to derive the limiting
equations in the case of a periodic structure.Wewill derive themacroscopicmodel of the flow in a formal
sense. In what follows, we assume that the functions involved in (5)-(17) depend on the space variable in
the following sense : (i) they are the functions of the macroscopic variable x ∈ Ω and (ii) for each x ∈ Ω,
of a microscopic variable y ∈ Y def

= Ym∪Yf ∪Γfm. The macroscopic and microscopic scales are related
by the small parameter ε, i.e., up to a translation y def

= ε−1 x. This implies that ∇ := ∇x + ε−1∇y,
where∇x,∇y are the gradients with respect to the variables x, y. Then the function uε standing for the
phase pressures, saturation, concentration functions, and the density of the solid reagent is assumed to
have the following asymptotic expansion (ansatz) :

uε(x, t) = u(0)(x, y, t) + ε u(1)(x, y, t) + ε2 u(2)(x, y, t) + ... =

+∞∑
j=0

εj u(k)(x, y, t), (18)
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where the function u(k)(x, y, t) is Y -periodic in y. Furthermore, the composition of functions U(uε)

can be expanded by using the Taylor theorem as follows :

U(uε) = U
(
u(0)

)
+ U ′

(
u(0)

)(
uε − u(0)

)
+ ...

def
= U

(
u(0)

)
+ εU (1) + ε2 U (2) + ...

From this equation, keeping the terms up to ε2-order, we obtain the following formula :

U(uε) = U
(
u(0)

)
+ εU ′

(
u(0)

)
u(1) + ε2

[
U ′
(
u(0)

)
u(2) +

1

2
U ′′
(
u(0)

)
u(1)

]
+ ... (19)

Now taking into account the formalism (18), we introduce the two-scale asymptotic expansion of the
functions pε`,w, p

ε
`,n, S

ε
` , c

ε
` , and Mε

` (` = f,m) the solution to (5)-(17) :

pεf,υ = p
(0)
f,υ(x, t) + ε p

(1)
f,υ(x, y, t) + ε2 p

(2)
f,υ(x, y, t) + ... (υ = w, n); (20)

pεm,υ = p
(0)
m,υ(x, y, t) + ε p

(1)
m,υ(x, y, t) + ε2 p

(2)
m,υ(x, y, t) + ... (υ = w, n); (21)

Sεf = S
(0)
f (x, t) + ε S

(1)
f (x, y, t) + ε2 S

(2)
f (x, y, t) + ... ; (22)

Sεm = S
(0)
m (x, y, t) + ε S

(1)
m (x, y, t) + ε2 S

(2)
m (x, y, t) + ... ; (23)

cεf = c
(0)
f (x, t) + ε c

(1)
f (x, y, t) + ε2 c

(2)
f (x, y, t) + ... ; (24)

cεm = c
(0)
m (x, y, t) + ε c

(1)
m (x, y, t) + ε2 c

(2)
m (x, y, t) + ... ; (25)

Mε
f = M

(0)
f (x, t) + εM

(1)
f (x, y, t) + ε2 M

(2)
f (x, y, t) + ... ; (26)

Mε
m = M

(0)
m (x, y, t) + εM

(1)
m (x, y, t) + ε2 M

(2)
m (x, y, t) + ... (27)

Remark 3. Note that the first terms p(0)
f,υ (υ = w, n), S

(0)
f , c

(0)
f , and M

(0)
f do not depend on the fast va-

riable y, which is explained by the fact that the saturation field in fractures is instantaneously established
and, consequently, is uniform within a cell (see, for instance, [5, 21]).

Now we turn to the asymptotical expansions of the mobility functions. The functions λ`,w, λ`,n depend
in a nonlinear way on the saturation Sε` . In order to obtain the asymptotic expansions for these functions,
we make use of the formula (19). We have :

λ`,υ(Sε` ) = λ`,υ

(
S

(0)
`

)
+ ε λ′`,υ

(
S

(0)
`

)
S

(1)
` + ε2 L

(2)
`,υ + ... (` = f,m; υ = w, n), (28)

where
L

(2)
`,υ

def
= λ′`,υ

(
S

(0)
`

)
S

(2)
` +

1

2
λ′′`,w

(
S

(0)
`

)
S

(1)
` (` = f,m; υ = w, n). (29)

In a similar way we can obtain the asymptotical expansion of the diffusion coefficient Dε
` = D`(S

ε
`,w).

Namely, we have :

D`(S
ε
` ) = D`

(
S

(0)
`

)
+ εD′`

(
S

(0)
`

)
S

(1)
` + ε2 D

(2)
` + ... (` = f,m), (30)

where
D

(2)
`

def
= D′`

(
S

(0)
`

)
S

(2)
` +

1

2
D′′`

(
S

(0)
`

)
S

(1)
` (` = f,m). (31)
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3.2 Asymptotic analysis of equations (5)1 and (5)2 in the fracture
part

We start our analysis by considering equation (5)1. Plugging (20), (22), (24) in (5)1, using (28) along
with the differential law ∇ := ∇x + ε−1∇y, we get :

Φf
∂

∂t

(
S
(0)
f (x, t) + ε S

(1)
f (x, y, t) + ....

)
−

−Kf

{
divx +

1

ε
divy

}{[
λf,w

(
S
(0)
f

)
+ ελ′f,w

(
S
(0)
f

)
S
(1)
f + ...

] [{
∇x +

1

ε
∇y

}(
p
(0)
f,w + εp

(1)
f,w + ...

)]}
=

= Cf,w

(
S
(0)
f (x, t) + ...

) (
M

(0)
f (x, t) + ...

)(
c
(0)
f (x, t) + ...

)
. (32)

The divergence operator in (32) we rewrite as follows :{
divx +

1

ε
divy

}[(
λf,w

(
S
(0)
f

)
+ ...

){
∇x +

1

ε
∇y

}(
p
(0)
f,w + ...

)]
=

= divx

{(
λf,w

(
S
(0)
f

)
+ ...

)
∇x

(
p
(0)
f,w + ...

)}
+

1

ε
divx

{(
λf,w

(
S
(0)
f

)
+ ...

)
∇y

(
p
(0)
f,w + ...

)}
+

+
1

ε
divy

{(
λf,w

(
S
(0)
f

)
+ ...

)
∇x

(
p
(0)
f,w + ...

)}
+

1

ε2
divy

{(
λf,w

(
S
(0)
f

)
+ ...

)
∇y

(
p
(0)
f,w + ...

)}
. (33)

Now let us represent equation (32) as a power series with respect to the parameter ε. We have :

ε−2
[
−Kf divy

{
λf,w

(
S
(0)
f

)
∇yp

(0)
f,w

}]
+

+ε−1
[
−Kf divx

{
λf,w

(
S
(0)
f

)
∇yp

(0)
f,w

}
−Kf divy

{
λf,w

(
S
(0)
f

)
∇xp

(0)
f,w

}
−

−Kf divy

{
λ′f,w

(
S
(0)
f

)
S
(1)
f ∇yp

(0)
f,w + λf,w

(
S
(0)
f

)
∇yp

(1)
f,w

}]
+

+ε0

[
Φf
∂S

(0)
f

∂t
−Kf divx

{
λf,w

(
S
(0)
f

)
∇xp

(0)
f,w

}
−Kf divx

{
λ′f,w

(
S
(0)
f

)
S
(1)
f ∇yp

(0)
f,w

}
−

−Kf divx

{
λf,w

(
S
(0)
f

)
∇yp

(1)
f,w

}
−Kf divy

{
λ′f,w

(
S
(0)
f

)
S
(1)
f ∇xp

(0)
f,w

}
−Kf divy

{
λf,w

(
S
(0)
f

)
∇xp

(1)
f,w

}
−

−1

2
Kfdivy

{
L
(2)
f,w∇yp

(0)
f,w

}
−Kfdivy

{
λf,w

(
S
(0)
f

)
∇yp

(2)
f,w

}
−Kfdivy

{
λ′f,w

(
S
(0)
f

)
S
(1)
f ∇yp

(1)
f,w

}]
+ .... =

= ε0
[
Cf,w S

(0)
f (x, t)M

(0)
f (x, t)c

(0)
f (x, t)

]
+ ....

Now taking into account that p(0)
f,w, S

(0)
f do not depend on the fast variable y, we get :

ε−1
[
−Kf divy

{
λf,w

(
S
(0)
f

)
∇xp

(0)
f,w

}
−Kf divy

{
λf,w

(
S
(0)
f

)
∇yp

(1)
f,w

}]
+

+ε0

[
Φf
∂S

(0)
f

∂t
−Kf divx

{
λf,w

(
S
(0)
f

)(
∇xp

(0)
f,w +∇yp

(1)
f,w

)}
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−Kf divy

{
λ′f,w

(
S
(0)
f

)
S
(1)
f

(
∇xp

(0)
f,w +∇yp

(1)
f,w

)
+ λf,w

(
S
(0)
f

)(
∇xp

(1)
f,w +∇yp

(2)
f,w

)}]
+ ... =

= ε0
[
Cf,w S

(0)
f (x, t)M

(0)
f (x, t)c

(0)
f (x, t)

]
+ .... (34)

The asymptotic analysis of equation (5)2 can be done in a similar way.

3.3 Asymptotic analysis of the interface conditions (13)
We start by considering the interface condition (13)1. We plug the asymptotic expansions (20), (22) in
(13)1 to have :

Kf

[
λf,w

(
S
(0)
f

)
+ ε λ′f,w

(
S
(0)
f

)
S
(1)
f ...

] {(
∇x +

1

ε
∇y

)(
p
(0)
f,w + ε p

(1)
f,w + ...

)}
· ν =

= ε2Km

[
λm,w

(
S(0)
m

)
+ ε...

] {(
∇x +

1

ε
∇y

)(
p(0)m,w + ε p(1)m,w + ...

)}
· ν. (35)

Now we can represent the relation (35) as a series with respect to the parameter ε. We have :

ε−1
[
Kf λf,w

(
S
(0)
f

)
∇yp

(0)
f,w · ν

]
+ ε0

[
Kf λf,w

(
S
(0)
f

)(
∇xp

(0)
f,w +∇yp

(1)
f,w

)
· ν
]

+

+ε1
[
Kf

(
λf,w

(
S
(0)
f

)
∇xp

(1)
f,w + λf,w

(
S
(0)
f

)
∇yp

(2)
f,w + λ′f,w

(
S
(0)
f

)
S
(1)
f ∇xp

(0)
f,w + λ′f,w

(
S
(0)
f

)
S
(1)
f ∇yp

(1)
f,w

)
· ν−

−Km λm,w

(
S(0)
m

)
∇yp

(0)
m,w · ν

]
+ ... = 0.

Now taking into account that p(0)
f,w, S

(0)
f do not depend on y, from this relation we get :

ε0
[
Kf λf,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)
· ν
]

+

+ε1
[
Kfλf,w

(
S

(0)
f

)(
∇xp(1)

f,w +∇yp(2)
f,w

)
· ν +Kfλ

′
f,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)
S

(1)
f · ν−

−Km λm,w

(
S

(0)
m

)
∇yp(0)

m,w · ν
]

+ ... = 0. (36)

The asymptotic analysis of equation (13)2 can be done in a similar way.

Finally, we turn to the interface condition (13)3. Plugging the asymptotic expansions (20), (22) in (13)3
one easily gets the following asymptotic expansions :

ε0
[
p

(0)
f,w − p

(0)
m,w

]
+ ... = 0 and ε0

[
p

(0)
f,n − p

(0)
m,n

]
+ ... = 0. (37)
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3.4 Asymptotic analysis of equations (9)1, (9)2 in thematrix blocks
Plugging the asymptotic expansions (21), (23) in (9)1, (9)2 and restricting ourselves to the terms of order
ε0, we easily get :

ε0

[
Φm

∂S
(0)
m

∂t
−Km divy

{
λm,w(S

(0)
m )∇p(0)

m,w

}]
+ ... = ε0 S(0)

m,w + ... (38)

and

ε0

[
Φm

∂S
(0)
m

∂t
−Km divy

{
λm,n(S

(0)
m )∇p(0)

m,n

}]
+ ... = ε0 S(0)

m,n + ..., (39)

where by (11), (23), (25), (27), the source terms S(0)
m,w,S(0)

m,n are given by :

S(0)
m,w

def
= Cm,w S

(0)
m M

(0)
m c

(0)
m and S(0)

m,n
def
= Cm,n

[
1− S(0)

m

]
M

(0)
m c

(0)
m . (40)

3.5 Asymptotic analysis of equation (5)3 in fracture part
We recall that the equation (5)3 reads :

Φε(x)
∂

∂t

[
Sεf c

ε
f

]
−Υε

1 −Υε
2 = Sεf,w, (41)

where
Υε

1
def
= div

{
Kf c

ε
f λ f,w(Sεf )∇pεf,w

}
and Υε

2
def
= div

{
Df(S

ε
f )∇cεf

}
. (42)

Asymptotic behavior of Υε
1. Let us introduce the notation :

Pε
def
= Kf λ f,w(Sεf )∇pεf,w. (43)

Then from (28)-(29) and (20), (22), we have that

Pε = Kf

[
λ f,w

(
S

(0)
f

)
+ ε λ′f,w

(
S

(0)
f

)
S

(1)
f + ε2 L

(2)
f,w + ...

]
×

×
[
ε−1

(
∇yp(0)

f,w

)
+ ε0

(
∇xp(0)

f,w +∇yp(1)
f,w

)
+ ε1

(
∇xp(1)

f,w +∇yp(2)
f,w

)
+ ...

]
.

Now taking into account that the function p(0)
f,w, S

(0)
f do not depend on the fast variable y, from this

relation (up to the terms of order ε1) we get :

Pε = ε0
[
Kfλ f,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)]
+

+ε1
[
Kfλ f,w

(
S

(0)
f

)(
∇xp(1)

f,w +∇yp(2)
f,w

)
+Kf S

(1)
f λ′f,w

(
S

(0)
f

) (
∇xp(0)

f,w +∇yp(1)
f,w

)]
+ ...

def
=

def
= ε0 P(0) + ε1 P(1) + ... (44)

Now, from (24), (41), (44) we obtain that

Pε cεf =
(
ε0 P(0) + ε1 P(1) + ...

) (
ε0 c

(0)
f + ε c

(1)
f + ...

)
=



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

= ε0
[
c

(0)
f Kfλ f,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)]
+

+ε1
{
c

(0)
f

[
Kfλ f,w

(
S

(0)
f

)(
∇xp(1)

f,w +∇yp(2)
f,w

)
+Kfλ

′
f,w

(
S

(0)
f

)
S

(1)
f

(
∇xp(0)

f,w +∇yp(1)
f,w

)]
+

+c
(1)
f

[
Kfλ f,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)]}
+ ...

def
= ε0 P

(0)
cf + ε1 P

(1)
cf + ... (45)

The relation (45) enables to obtain the asymptotic expansion of Υε
1. Namely, we have :

Υε
1 =

{
divx +

1

ε
divy

}(
Kf c

ε
f λ f,w(Sεf )∇pεf,w

)
= ε0 divxP

(0)
cf + ε0 divyP

(1)
cf + .... (46)

Asymptotic behavior of Υε
2. Proceeding now as above and taking into account that the function c

(0)
f

does not depend on y, we get :

Υε
2 = ε−1

[
divy

{
Df

(
S

(0)
f

)
∇xc(0)

f

}
+ divy

{
Df

(
S

(0)
f

)
∇yc(1)

f

}]
+

+ε0 divx

{
Df

(
S

(0)
f

)(
∇xc(0)

f +∇yc(1)
f

)}
+

+ε0 divy

{
D′f

(
S

(0)
f

)
S

(1)
f

(
∇xc(0)

f +∇yc(1)
f

)
+ Df

(
S

(0)
f

)(
∇xc(1)

f +∇yc(2)
f

)}
+ ... (47)

Let us introduce the notation :

C(0) def
= Df

(
S

(0)
f

)(
∇xc(0)

f +∇yc(1)
f

)
; (48)

C(1) def
= D′f

(
S

(0)
f

)
S

(1)
f

(
∇xc(0)

f +∇yc(1)
f

)
+ Df

(
S

(0)
f

)(
∇xc(1)

f +∇yc(2)
f

)
. (49)

Taking into account (48), (49), we rewrite (47) as follows :

Υε
2 = ε−1 divy

{
Df

(
S

(0)
f

)(
∇xc(0)

f +∇yc(1)
f

)}
+ ε0 divxC

(0) + ε0 divyC
(1) + ... (50)

Finally, from (46) and (50) we get :

Υε
1 + Υε

2 = ε−1 divy

{
Df

(
S

(0)
f

)(
∇xc(0)

f +∇yc(1)
f

)}
+

+ε0 divx

{
C(0) + P

(0)
cf

}
+ ε0 divy

{
C(1) + P

(1)
cf

}
+ ... (51)

3.6 Asymptotic analysis of the interface condition (15)
As in Section 3.3 we have that (see also the relation (51))

ε1
{[

C(1) + P
(1)
cf

]
−
[
Km c

(0)
m λm,w

(
S

(0)
m

)
∇yp(0)

m,w + Dm

(
S

(0)
m

)
∇yc(0)

m

]}
· ν + ... = 0. (52)
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Finally, we turn to the interface condition (14)1. We get :

ε0
[
c

(0)
f − c

(0)
m

]
+ ... = 0. (53)

3.7 Asymptotic analysis of equations (9)3 in the matrix blocks
Plugging the asymptotic expansions (21), (23), (25) in (9)3 and restricting ourselves to the terms of order
ε0, we easily get :

ε0
[
Φm

∂

∂t

[
S

(0)
m c

(0)
m

]
−Km divy

{
Km c

(0)
m λm,w

(
S

(0)
m

)
∇yp(0)

m,w + Dm

(
S

(0)
m

)
∇yc(0)

m

}]
+ ... =

= ε0 S(0)
m,w + ..., (54)

where S(0)
m,w is defined in (40).

3.8 Chain of equations
In this section, using the results of the previous ones, we are led to the following relations :

ε−2–equations. Taking into account our standing assumptions on the zero terms of the asymptotic
expansions, i.e., p(0)

f,w = p
(0)
f,w(x, t), p(0)

f,n = p
(0)
f,n(x, t), S(0)

f = S
(0)
f (x, t), and c

(0)
f = c

(0)
f (x, t), we

observe that the ε−2–equations are satisfied automatically.

ε−1– equations. From the second term on the left-hand side of (34) and taking into account that p(0)
f,w =

p
(0)
f,w(x, t), S(0)

f = S
(0)
f (x, t), we get the following equation for the corrector function p(1)

f,w :

−divy

{
λf,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)}
= 0. (55)

In a standard way (see, e.g., [16]) we set :

p
(1)
f,w(x, y, t) =

∑
j

ζj(y)
∂ p

(0)
f,w

∂xj
(x, t) + C1, (56)

where C1 = C1(x) is a constant which depends on the slow variable x, only, and ζj (j = 1, ..., d) is the
solution to the following auxiliary cell problem :

−∆y ζj = 0 in Yf ;

∇yζj · νy = −ej · νy on Γfm

y 7→ ζj(y) Y − periodic.

(57)

Here νy is a unit outer normal vector to Γfm and ej is the j-th coordinate vector.

In a similar way, we obtain the representation for the corrector functions p(1)
f,n = p

(1)
f,n(x, y, t) and c(1)

f =

c
(1)
f (x, y, t) by setting :

p
(1)
f,n(x, y, t) =

∑
j

ζj(y)
∂ p

(0)
f,n

∂xj
(x, t) + C2 (58)
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and

c
(1)
f (x, y, t) =

∑
j

ζj(y)
∂ c

(0)
f

∂xj
(x, t) + C3, (59)

where C2 = C2(x), C3 = C3(x) are constants which depend on the slow variable x, only.

ε0– equations. From the third term of the representation (34), we get the following homogenized equa-
tion involving the corrector function p(2)

f,w :

Φf
∂S

(0)
f

∂t
−Kfdivx

{
λf,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)}
−KfdivyZf,w = S(0)

f,w, (60)

where
S(0)
f,w

def
= Cf,wS

(0)
f M

(0)
f c

(0)
f (61)

and
Zf,w

def
= λf,w

(
S

(0)
f

)(
∇xp(1)

f,w +∇yp(2)
f,w

)
+ λ′f,w

(
S

(0)
f

)
S

(1)
f

(
∇xp(0)

f,w +∇yp(1)
f,w

)
. (62)

Here Zf,w is an Y -periodic function in the fast variable y.

In a similar way, we obtain the second upscaled equation. It reads :

−Φf
∂S

(0)
f

∂t
−Kfdivx

{
λf,n

(
S

(0)
f

)(
∇xp(0)

f,n +∇yp(1)
f,n

)}
−KfdivyZf,n = S(0)

f,n, (63)

where
S(0)
f,n

def
= Cf,n[1− S(0)

f ]M
(0)
f c

(0)
f (64)

and
Zf,n

def
= λf,n

(
S

(0)
f

)(
∇xp(1)

f,n +∇yp(2)
f,n

)
+ λ′f,n

(
S

(0)
f

)
S

(1)
f,n

(
∇xp(0)

f,n +∇yp(1)
f,n

)
. (65)

Here Zf,n is an Y -periodic function in the fast variable y.

Finally, we turn to the concentration equation. From (51) we get :

Φf
∂

∂t

[
S

(0)
f c

(0)
f

]
− divx

{
C(0) + P

(0)
cf

}
− divy

{
C(1) + P

(1)
cf

}
= S(0)

f,w,

Then taking into account the definitions of C(0), P(0)
cf , C(1), and P(1)

cf (see (45), (46), (48), (49)) we have :

Φf
∂

∂t

[
S

(0)
f c

(0)
f

]
−divx

{
c

(0)
f Kfλ f,w

(
S

(0)
f

)(
∇xp(0)

f,w +∇yp(1)
f,w

)
+Df

(
S

(0)
f

)(
∇xc(0)

f +∇yc(1)
f

)}
−

−divy

{
C(1) + P

(1)
cf

}
= S(0)

f,w. (66)

Notice that, formally, the homogenization process is achieved at this stage. However, the equations (60),
(63), and (66) still contain the corrector functions. Our next goal is to eliminate these functions from
these equations and obtain the homogenized equations involving the zero order terms in the asymptotic
expansions, only.
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3.9 Derivation of the homogenized equations
Consider equation (60) with the function Zf,w given by (62). We integrate this equation over Yf . Then
in a standard way (see, e.g., [16]), we have :

Φf |Yf |
∂S

(0)
f

∂t
− divx

{
K? λ f,w

(
S

(0)
f

)
∇xp(0)

f,w

}
+ Jf = |Yf |S

(0)
f,w . (67)

Here K? is given by its entries K?
ij defined by :

K?
ij

def
=

Kf

|Ym|

∫
Yf

[∇yζi + ei] [∇yζj + ej ] dy, (68)

where ζj (j = 1, ..., d) is a solution of the cell problem (57) and

Jf
def
= −Kf

∫
Yf

divy

{
λf,w

(
S

(0)
f

) [
∇xp(1)

f,w +∇yp(2)
f,w

]
+ λ′f,w

(
S

(0)
f

)
S

(1)
f

[
∇xp(0)

f,w +∇yp(1)
f,w

]}
dy.

(69)

In order to rearrange Jf we make use of the well known divergence theorem (see, e.g., [14]) :∫
O

divw dx =

∫
∂O

w · ν dγ, (70)

where ν is the unit outer normal vector to the boundary of the domain O denoted by ∂O.

Using now the relation (70), from (69), we obtain that

Jf = −Kf

∫
Γfm

{
λf,w

(
S

(0)
f

) [
∇xp(1)

f,w +∇yp(2)
f,w

]
+ λ′f,w

(
S

(0)
f

)
S

(1)
f

[
∇xp(0)

f,w +∇yp(1)
f,w

]}
· ν dγ, (71)

Now we make use of (36). Namely, we have :

Kf

{
λf,w

(
S

(0)
f

) [
∇xp(1)

f,w +∇yp(2)
f,w

]
+ λ′f,w

(
S

(0)
f

)
S

(1)
f

[
∇xp(0)

f,w +∇yp(1)
f,w

]}
· ν =

= Km λm,w
(
S

(0)
m

)
∇yp(0)

m,w · ν. (72)

Then from (71), (72), we have :

Jf = Km

∫
Γfm

{
λm,w

(
S

(0)
m

)
∇yp(0)

m,w

}
· νm dγ, (73)

where νm denotes the unit outer normal vector to the boundary Γfm of Ym. Now we make use of (38). It
implies the following equation in the matrix block Ym :

Φm
∂S

(0)
m

∂t
−Km divy

{
λm,w(S

(0)
m )∇p(0)

m,w

}
= S(0)

m,w. (74)



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Then we have :

Jf = Km

∫
Ym

divy

{
λm,w(S

(0)
m )∇p(0)

m,w

}
dy =

∫
Ym

Φm
∂S

(0)
m

∂t
dy −

∫
Ym

S(0)
m,w dy.

This means that equation (67) becomes :

Φf |Yf |
∂S

(0)
f

∂t
− |Ym| divx

{
K?(x)λ f,w

(
S

(0)
f

)
∇xp(0)

f,w

}
= |Yf | S

(0)
f,w −

∫
Ym

[
Φm

∂S
(0)
m

∂t
− S(0)

m,w

]
dy.

The other homogenized equations can be obtained in a similar way.

3.10 The homogenized system
In order to formulate the first homogenized equation, we introduce the notation :

– S
def
= S

(0)
f , Pw

def
= p

(0)
f,w, Pn

def
= p

(0)
f,n, c

def
= c

(0)
f denote the homogenized (macroscopic) wet-

ting liquid saturation, the wetting and nonwetting liquid pressures, and concentration function,
respectively.

– the averaged density of the solid reagentMf
def
= M

(0)
f satisfies the following kinetic equation :

∂Mf

∂t
= Sf,M in ΩT ;

Mf(x, 0) = 1 in Ω

with Sf,M
def
= Cf,M SMf c, (75)

– Φ? denotes the effective porosity and is given by :

Φ? def
= Φf

|Yf |
|Ym|

, (76)

where |Y`| is the measure of the set Y` (` = f,m).
– K? is the homogenized tensor with the entries K?

ij defined by :

K?
ij

def
=

Kf

|Ym|

∫
Yf

[∇yζi + ei] [∇yζj + ej ] dy, (77)

where ζj is a solution of the auxiliary cell problem :
−∆y ζj = 0 in Yf ;

∇yζj · νy = −ej · νy on Γfm

y 7→ ζj(y) Y − periodic.

(78)

– Sw, Sn denote the source terms given by :

Sw
def
=
|Yf |
|Ym|

Cf,w SMf c and Sn
def
=
|Yf |
|Ym|

Cf,n [1− S]Mf c. (79)
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– KD(S) is the homogenized tensor defined by its entries :

KD
ij(S)

def
=

D(S)

|Ym|

∫
Yf

[∇yζi + ei] [∇yζj + ej ] dy. (80)

Thus the homogenized system reads :

Φ? ∂S

∂t
− div

{
K? λ f,w(S)∇Pw

}
= Sw + Qw in ΩT ;

−Φ? ∂S

∂t
− div

{
K? λ f,n(S)∇Pn

}
= Sn + Qn in ΩT ;

Φ? ∂

∂t
[Sc]− div

{
K? cλ f,w (S)∇Pw + KD(S)∇c

}
= Sw + Qc in ΩT ;

Pc(S) = Pn − Pw in ΩT .

(81)

The flow equations in the matrix block are given by :

Φm
∂s

∂t
− div

{
Kmλm,w(s)∇pw

}
= Sm,w;

−Φm
∂s

∂t
− div

{
Kmλm,n(s)∇pn

}
= Sm,n;

Φm
∂

∂t

[
s cm

]
− div

{
Km cm λm,w(s)∇pw + Dm(s)∇cm

}
= Sm,w;

pc(s) = pn − pw.

(82)

Here s def
= S

(0)
m , pw

def
= p

(0)
m,w, pn

def
= p

(0)
m,n and cm

def
= c

(0)
m denote the local wetting liquid saturation,

the wetting and nonwetting liquid pressures, and the concentration in the matrix block Ym. In addition,
Sm,w

def
= S(0)

m,w and Sm,n
def
= S(0)

m,n. The averaged density of the solid reagent Mm satisfies in the matrix
block the following kinetic equation :

∂Mm

∂t
= Sm,M;

Mm(x, 0) = 1
with Sm,M

def
= Cm,M sMm cm, (83)

For any x ∈ Ω and t > 0, the matrix-fracture source terms are given by :

Qw
def
= − 1

|Ym|

∫
Ym

[
Φm

∂s

∂t
− Sm,w

]
dy; Qn

def
=

1

|Ym|

∫
Ym

[
Φm

∂s

∂t
+ Sm,n

]
dy (84)

and
Qc

def
= − 1

|Ym|

∫
Ym

[
Φm

∂

∂t
(scm)− Sm,w

]
dy. (85)
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Figure 1: Influence of the ratio τ/τchem on the pressure oscillations : dependence of the pressure maxi-
mum on time.

4 Instability from time non-locality of the reaction rate
Let for the sake of simplicity, the concentration of the chemically active component of the skeleton and
the capillary pressure vanish in the fractures. Hence, Sw = Sn = 0 in (81). Consider the 1D initial
boundary value problem for the homogenized equations (81) in the cylinder ΩT

def
= (0, L) × (0, T ),

where L denotes the width of the double porosity layer. The initial state of the layer is characterized by
the initial concentration of the solid reactant equalMf(x, 0) = m0 and the saturation of the wetting fluid
(S(x, 0) = 1) with c(x, 0) = 0. The pressure difference between left and right boundaries is supposed
to be constant∆p = p(0, t)−p(L, t) > 0. The boundary condition for the concentration of the the liquid
reactant at the inlet boundary is c(0, t) = c0. Thus the problem under consideration models injection at
x = 0 of the liquid reactant into the double porosity layer with chemically active matrix. The injection
results in reaction wave propagation accompanied by production of the gas phase (represented by Qn

term in (81)) and two-phase flow in the layer.

Under the assumption pc = 0 the matrix problem (82) introduces a time scale τ being the characteristic
time of diffusion in the matrix block (in this case convection in the matrix blocks is determined by the
reaction rate, which, in turn, is determined by the countercurrent diffusion). If τ → 0, the problem
(82) becomes elliptic and the source terms in the homogenized equations depend only on the instant
concentration c, saturation s and the distribution of the solid reactant in the matrix block. This terms
vanish if c = 0 or s = 0 or Mm = 0. It is clear that the evaluation of Qα requires to solve the cell
problem. For the sake of simplicity, let us take this local source terms in the following form

Qw
def
= Cf,wr̂(t); Qn

def
= Cf,nr̂(t); Qc

def
= Cf,cr̂(t), (86)
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Figure 2: Influence of the ratio τ/τchem on the pressure oscillations : the envelope curves of pressure
oscillations at the front of the reaction.

where r̂(t) = (τchem)−1ms c, τchem = constant. Note that the source terms (86) are local in time. In this
case the homogenized equations are similar to the equations of the flow in a homogeneous medium with
upscaled (macroscopic) kinetics, which depends on instantaneous values of homogenized concentrations
of the reactants. However, if τ is large enough in comparison with the characteristic time scale of the
problem, the time non-locality of the source terms should be taken into account, which originates from
parabolicity of (82). Due to the finite diffusion time there is a time delay between the change of c = 0

or s = 0 and the resulting change of homogenized reaction sources. One of the most simple non-local
dependence, which models this phenomenon, is

Qw
def
= Cf,wr(t); Qn

def
= Cf,nr(t); Qc

def
= Cf,cr(t). (87)

r(t) =
1

τ

t∫
0

r̂(ξ) exp

(
ξ − t
τ

)
dξ, r̂ = Da ·Mm s c, Da = tref/τchem. (88)

According to (88) r → r̂ if τ → 0. Consider the influence of τ/τchem on the stability of the reaction wave
propagation. The problem was solved numerically with dimensionless parameters of the problem c0 =

0.5,Mm(x, 0) = 0.1, andDa = (L2µwΦ?)/(τchemK∆p) = 100. The equations were approximated on
uniform grid and integrated using IMPES method for different values of the parameter τ (τ/τchem =

0; 0.1; 0.3; 1).

The solutions show instability of the stationary mode of reaction front propagation. The instability ma-
nifests itself in spontaneous transition to the self-oscillating mode, in which the flow parameters in the
reaction zone oscillate in time with some frequency (see, Fig. 1, where the dependence on time of the
maximum pressure is presented for different τ/τchem). In Fig. 2 the envelope curves of pressure oscilla-
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tions at the front of the reaction are shown. One can conclude that even small non-locality in time of the
sources representing the chemical reaction stimulates the instability and transition to the self-oscillating
mode.

Concluding remarks
In this paper we continue to study the non-equilibrium two-phase flow models. Our previous results
are presented in the monograph [20]. We consider the two main directions of our future study : the
rigorous mathematical analysis of the model (5)-(17) and a deeper numerical simulation of the initial
and homogenized models. This work will be done in the forthcoming papers.
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