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Abstract: 
In this paper, predictions of the so-called Microplane model for shape memory alloys (SMAs) and the 

effect of different numerical schemes under various proportional and nonproportional loadings are 

investigated. Accordingly, numeric schemes with central symmetry are shown to possess shortcomings 

in addressing tension-torsion coupling in the response of SMAs. Therefore, an enhanced numeric 

scheme is proposed in order to add tension-torsion coupling to a formerly-developed microplane model 

of Shape memory alloys. The presented integration scheme gives rise to numerical results which are in 

acceptable agreements with experimental findings in both 1-D and 3-D cases. 
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1 Introduction 
 
SMAs have thermo-mechanical behaviors which produce two distinguished characteristics known as 

Shape Memory Effect (SME), recovering a large deformation caused by mechanical stresses upon 

heating up to a specific temperature due to the transformation of detwinned martensite to austenite, and 

Pseudoelasticity (PE), the appearance of no residual strain after an inelastic loading/unloading cycle at 

high enough temperatures. These features create a vast range of applications for these alloys such as 

biomedical engineering, aerospace industries, mechanical engineering, and robotics. These applications 

require a constitutive model to predict materials behaviors under complex loadings. 
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Considering transitions between austenite and martensite phases in these materials and the martensite 

volume fraction as an internal variable for SMAs, Tanaka [1] provided a 1-D constitutive model, later 

modified by Liang and Rogers [2], to predict pseudoelastic response. Brinson [3] proposed to separate 

twinned and detwinned parts of the martensite volume fraction as internal variables in 1-D models so 

that such a model is able to predict SME as well. The first 3-D constitutive model was developed by 

Boyd and Lagoudas [4] by generalizing 1-D constitutive models to 3-D cases. But, in a general 3-D 

loading, reorientation i.e. variations in the configuration of the martensite lattice and phase 

transformation may occur simultaneously. Lim and McDowell [5] showed that the transformation strain 

rate vector and the deviatoric stress vector are not parallel in nonproportional loadings; therefore, any 

3-D model based on the J2 or J2–J3 plasticity for the transformation strain rate is limited to proportional 

loadings. Peng et al. [6] generalized the definition of effective stress to model SMAs under 

nonproportional loadings using normality rule. A phenomenological model was developed by Bouvet et 

al. [7] for modeling PE in which the transformation strain was calculated by a potential function. 

Microplane theory is an approach for 3-D constitutive modeling, based on a 1-D constitutive model, 

with the ability of predicting reorientation under nonproportional loadings [8,9,10]. In this theory, at any 

material point, a 1-D law is applied for the related stress and strain acting on any plane which passes 

through that point. This process is accomplished via numerical integration over a unit sphere. To 

calculate integrals over a hemisphere at each integration point, Bazant et al. [11] suggested a 21-point 

numerical scheme which has been vastly utilized in microplane modeling of SMAs. The first 

microplane-based model was proposed by Brocca et al. [12] by the projection of the stress vector on 

each plane. The shear stress on each plane was separated into the two random vectors, and the martensite 

volume fraction was calculated by these shear vectors from the same phase diagram. Kadkhodaei et al. 

[10] proposed to use a unique shear vector projected from the stress traction on each plane. Using the 

volumetric–deviatoric split, they showed that the microplane theory can predict reorientation under 

nonproportional loadings. 

The integration over a unit sphere is used in many fields including meteorology, chemistry, and physics. 

The numerical scheme proposed by Bazant et al. [11] is based on the Gauss integration on a semi-sphere 

due to the symmetry of stress tensor, and 21-point integration was shown to give the most precise results 

for modeling SMAs. High-order Gauss scheme was proposed by Delley [13] in which the unit sphere is 

divided to the Tetrahedrons. Heo et al. [14] suggested symmetric cubature formulae with 13 to 39 points 

on the surface of the unit sphere. Hannay et al. [15] presented the Fibonacci numerical integration in 

which the angular distance between the nodes on the surface is based on the Fibonacci sequence. 

According to the location of electrons on the surface of a sphere for the minimum electrical charge, 

Fliege et al. [16] proposed a numerical scheme with equal-distance distribution of the nodes on the 

surface of a unit sphere. Due to the physical aspect of this scheme, it is allowed to rotate the nodes on 

the surface. Comparing exact integration of some basic functions with this numerical scheme, they 

showed that a scheme with more nodes does not guarantee more precision. Eheret et al. [17] studied a 

class of constitutive models based on integration on a unit sphere. They showed that the integration 

schemes can affect the material isotropy and cause directional bias in the material behavior. They 

classified the numerical schemes into with- and without-central symmetric. Huang et al. [18] studied 

effects of numerical schemes, proposed by Bazant, of the microplane constitutive models (M4) for 

concrete. 

Mehrabi et al. [19] conducted tension-torsion experiments on thin-walled SMAs samples and observed 

axial strains in pure torsion test which indicates the so-called tension-torsion coupling. Microplane 

models founded on 21-point integration cannot predict the tension-torsion coupling. Using the 

generalized effective stress and strain associated with microplane theory, they presented a model for 

predicting tension-torsion behavior.  
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In the present work, this issue is addressed and different numerical schemes in calculating the 

microplane integrals are evaluated to propose an approach using which microplane formulations will be 

able to predict tension-torsion coupling. 

2 Introduction to Microplane Formulation 
As mentioned, SMAs have thermo-mechanical behaviors and their phase would change under different 

stress-temperature conditions. Fig.1 shows the stress-temperature phase diagram in which the different 

SMAs’ phases are presented and is used to calculate the evolution of the martensite volume fraction [3]. 

Due to the different properties of the austenite and martensite, material parameters such as young 

modulus can be evaluated as following in which EA and EM represent austenite and martensite’s young 

modulus, respectively. For some SMA materials a general 4-line phase diagram, as shown in Fig. 2, has 

a better agreement. 

( ) (1 ) A ME E E      

 
Fig. 1. Stress-temperature phase diagram 

 
Fig. 2. Phase diagram for evaluating martensite 

volume fraction 

A 3-D macroscopic constitutive model for SMAs based on microplane theory is explained in this section. 

Based on Fig. 3, the normal and tangent stress vector due to the stress tensor’s projection are [10]: 
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Fig. 3. Stress traction decomposition on microplanes 

where σ𝑁, σ𝑇 and n represent normal stress, shear stress and unit normal vector on each microplane, 

respectively. In the homogenization process, using the principle of complementary virtual, the 

macroscopic strain is [10]: 

( )ij ij N N T Td d     
 

     

in which Ω is the surface of a unit sphere representing all possible microplane orientations passing 

through a material point. The linear elastic relation for normal stress and strain is assumed. As the phase 

transformation is due to the shear deformation, the total inelastic strain is considered to be only from 
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shear strains on the microplanes. Splitting elastic and transformation strains, once can obtain the 

following relations: 

e tr

ij ij ij    ,    3 1
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where and
s are the martensite and stress-induced martensite volume fraction and is the von Mises 

effective stress and ϵ* is recoverable strain. Application of 21-point numerical scheme for calculating 

the integrals gives: 
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in which W is the weight of each plane and the index q refers to each individual plane. Due to the 

symmetry of the 21-point method, these 21 points are on the surface of a unit hemisphere [10]. 

3 Numerical Investigations 

In this section, the response of an SMA with the material properties presented in table 1 under 

nonproportional loadings using 21-point numerical integration is investigated. In the first case, a uniaxial 

stress is applied to the amount of 500 MPa in x direction; then, this stress is held constant while stress 

in the y direction is simultaneously increased up to 500 MPa. After the magnitude of the stress reaches 

the desired level, the stress in x direction will reduce to zero while the stress in y direction is constant. 

The temperature is assumed to be 500C in all cases. At the end, the stress in the y direction will diminish. 

In Fig. 4, results of this tension-tension nonproportional loading cycle are shown. 

Table 1. Material Parameters in figures 4 to 6 

AE

[𝐺𝑃𝑎] 
ME

[𝐺𝑃𝑎] 
fM

[℃] 
sM 

[℃] 
sA 

[℃] 
fA 

[℃] 
MC 

[
𝑀𝑃𝑎

℃
] 

AC 

[
𝑀𝑃𝑎

℃
] 

cr

s 

[𝑀𝑃𝑎] 

cr

f 

[𝑀𝑃𝑎] 

* 

67 26.3 9 18.4 34.5 49 8 13.8 100 170 0.067 
As it is presented in Fig. 4, at the first stage, the axial strain in x direction increases while the axial strain 

in y direction also increases in the negative direction due to the lateral effect. In the second stage, based 

on the transformation stress at the end of the previous step, the transformation is completed so the 

relation of the axial strains would not be linear owing to the reorientation of the martensite variants. 

Moreover, there is a jump at the beginning caused by the numerical integration algorithm and change in 

the status of the stress from the uniaxial to the biaxial condition. In a uniaxial situation, traction on some 

planes is zero; but, when stress in the second direction is applied, these planes would have traction on 

them and they would affect on the resulted strain tensor. In this stage, the strain in y direction would 

increase in the positive magnitude. Stage 3 is similar to step 2 except in this step the stress is being 

removed in x direction. At the beginning of the forth step, there would be again a jump like the one at 

the end of the first stage because of the same reason which is change in the stress state from biaxial to 

the uniaxial loading. 

 
(b) Axial strain-strain response 

 
(a) Axial loading path 

Fig. 4. Details of tension-tension nonproportional loading using 21 -point integration scheme 
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Fig. 5 shows another case in which the uniaxial stress increases up to 500 MPa; then, the axial stress is 

held constant and the shear stress is applied up to the amount of 500MPa. In the next stage, the axial 

stress is removed while the shear stress is constant. Finally, at the last step, the remaining shear stress 

would decline. At the end of the first step, the transformation is complete and the material is elastic 

detwinned martensite. At the beginning of the second stage, the shear strain have a jump resulted from 

the same reason in the tension-tension case. In the second and third steps, the microplane theory reveals 

 
(b) Axial-Shear strain response 

 
(a) Stress path 

Fig. 5. Details of tension-torsion nonproportional loading using 21 -point integration scheme 

reorientation due to change in the direction of the principal axes of the stress tensor so the martensite 

variants would alter their orientation as well. At the last step, as it is shown in Fig. 5, axial strain is zero 

when there is only shear stress which means inability of the simulation to predict tension-torsion 

coupling using 21-point numerical integration. 

Owing to the special arrangement of the microplanes, symmetric planes cancel out their values. These 

values for Bazant’s 21-point numerical scheme for simple shear are presented in table 2. As is shown, 
21

11

1

( ) ( )
q

W q T q


  and hence ϵ11 would be eliminated. Therefore, centrosymmetric numerical methods 

cannot predict the expected tension-torsion coupling. 

Table 2.  T11 and weight of each plane in 21-point numerical scheme in simple shear loading 

10 9 8 7 6 5 4 3 2 1 
# of 

planes 

-0.459 0 0.108 -0.108 0.183 0 -0.183 -0.24 0.24 0 𝑇11 

0.0254 0.0254 0.0254 0.0254 0.0198 0.0198 0.0198 0.0198 0.0198 0.0198 W 

21 20 19 18 17 16 15 14 13 12 11 
# of 

planes 

0 0 0 0.321 0 -0.321 0.192 -0.192 0.458 -0.27 0.27 𝑇11 

0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 0.0254 W 

Consequently, a non-centrosymmetric numerical scheme needs to be applied to take account of the 

tension-torsion coupling. After evaluating different non-centrosymmetric numerical schemes, the 25-

point numeric scheme proposed by Fliege et al. (1999) showed a reasonable axial strain during pure 

shear loading which is expected as is presented in Fig. 6. 

 
Fig. 6. Axial strain in pure shear loading when 25-point integration is applied. 
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4 Experimental Validation 

Results of the microplane model, using the 25-point numerical integration, are compared with 

experimental findings in proportional and nonproportional tests. The material parameters are obtained 

from axial and simple shear tests, according to Fig. 7, and are presented in table 2. 
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The coefficients kS and kE state the extent of coupling between tension and torsion and are called 

effective stress coefficient and effective strain coefficient, respectively, to match the 1-D experiment 

and the microplane results. The coefficient of kS is determined by the yield stresses in uniaxial 

tension,𝜎0
𝑠, and in pure torsion, 𝜏0

𝑡 , and coefficient of kE is defined by the axial strain corresponding to 

the yield stress in pure tension, 𝜀0
𝑡, and the yield shear strain in pure torsion, 𝛾0

𝑡 [20]. 

Using 4-line phase diagram, as is shown in Fig. 2, the martensite volume fraction can be evaluated.  

Table 2. Material parameters in figures 7 to 10 

AE

[𝐺𝑃𝑎] 
ME

[𝐺𝑃𝑎] 
fM 

[℃] 
sM 

[℃] 
sA 

[℃] 
fA 

[℃] 
MSC 

[
𝑀𝑃𝑎

℃
] 

MFC 

[
𝑀𝑃𝑎

℃
] 

ASC 

[
𝑀𝑃𝑎

℃
] 

AFC 

[
𝑀𝑃𝑎

℃
] 

61.943 34.65 -114 -107 -99.14 -88.17 2.41 4.63 3.16 2.02 
*  sC EC       

0.0253 0.3 1.495 1.495       

 
(a) 

 
(b) 

Fig. 7. The utilized axial and shear tests to obtain material parameters for 25-point integration 

The results of three unproportional loading cases with different paths are compared with the use of 21-

point and 25-point numerical schemes. As is shown in Fig. 8, comparison of the results reveal that the 

25-point scheme leads to a better agreement with the experimental observations. It is obvious that the 

25-scheme shows axial strain at the end of the second step while the stress state is pure shear. 

 
(a) 

1 

2 
3 
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(b) 

Fig. 8. Nonproportional tension-torsion results, case(1) 

In Fig. 8(a), at the end of the second step, only shear stress is applied and, as Fig. 8(b) shows, at this 

point, there is axial strain beside the shear strain which is predicted only by 25-point scheme. Based on 

Fig. 9(b) and 10(b), the 25-point scheme can predict the experimental results more closely compared 

with the 21-point scheme. The maximum difference between the 25-point scheme and the experiment 

results are 18.5% and 15.2%for case (2) and case (3), respectively. 

 


(a) 


(b) 

Fig. 9. Nonproportional tension-torsion results, case (2) 
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
(a) 


(b) 

Fig. 10. Nonproportional tension-torsion results, case (3) 
Conclusion 
In this study, the 21-point integration scheme in microplae modeling of SMAs was studied. It was shown 

that this method can result in some discontinues responses in the case of nonproportional loadings. In 

fact, because of the centrosymmetry instinct of this scheme, it is not possible to reach the coupling 

between tension and torsion. Although the developed 25-point numeric scheme may possess sort of the 

same discontinuity, thanks to its non-centrosymmetry, it enables the microplane formulation to predict 

tension-torsion coupling under nonproportional loadings. 
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