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Abstract :

This paper is devoted to determining the shakedown limit states of porous ductile materials with Drucker-
Prager matrix under cyclically repeated loads. Using the hollow sphere model and Melan’s shakedown
theorem based on time-independent residual stress fields, a macroscopic fatigue criterion is derived for
the general conditions of cyclic loads. First, the case of the hollow sphere subjected to pure hydrostatic
loading is studied and the limit states of collapse by fatigue or by development of mechanism are derived.
Then, the general case involving shear effects with any arbitrary cyclic load fluctuations ranging from
the pulsating load to the alternating one is considered. The key idea is in two steps : (i) the choice of
appropriate trial stress and trial residual stress fields and (ii) then maximizing the size of the load do-
main in the spirit of the standard lower shakedown theorem. The new macroscopic shakedown criterion
depends on the porosity, the friction angle, Poisson’s ratio, the two stress invariants of the effective stress
tensor and the sign of the third one. Together with the limit analysis-based yield criterion corresponding
to the sudden collapse by development of a mechanism at the first cycle, it defines the safety domain
of porous materials subjected to cyclic load processes. Interestingly, it is found that the safe domain is
little sensitive to variations of the friction angle, however, it is considerably reduced compared to the
one under monotonic loads obtained by limit analysis. Finally, a comparative study between the analy-
tical results and numerical predictions performed by micromechanics-based finite element simulations
is conducted for different porosities and friction angles.

Mots clefs : Shakedown, Porous material, Drucker-Prager matrix

1 Introduction
The ductile damage of porous materials has aroused a considerable and renewed interest since the pio-
neering work of Gurson [1] on void growth and overall effective yielding of an ideally plastic hollow
sphere and hollow cylinder unit cells. The Gurson-like approach, based on the homogenization theory
and the upper bound limit analysis theorem, has been extended to porous solids accounting for material
anisotropy [2, 3], void shape effects [4, 5], size effects [6, 7], materials with pressure-sensitive matrix
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[8, 9, 10], and non-associated constitutive laws [11]. The dual approach, namely the static limit analysis
method, has been recently applied in the strength analysis of porous solids [12, 13]. This approach relies
on a suitable choice of statically and plastically admissible trial stress tensors making it more difficult
than Gurson’s procedure which requires the choice of kinematically admissible trial velocity vectors.

However, structures and mechanical components are often submitted to cyclic mechanical loads and/or
temperature variations, acting simultaneously. In fact, an elastic plastic solid subjected to variable re-
peated actions may fail as a result of alternating plasticity, comprising equal plastic strains of opposite
sign leading eventually to local material failure, or by ratcheting (incremental collapse), a progressive
accumulation of plastic strains. It may happen also that the structure endures a finite number of cycles
with a stabilization of the plastic strains, which is called shakedown. In this case, the response of the
structure becomes purely elastic which is beneficial for its strength with respect to high-cycle (or po-
lycyclic) fatigue. The powerful shakedown static and kinematic theorems have been provided for the
elastic perfectly plastic materials by Melan [14] and Koiter [15] respectively, and then extended to va-
rious and more general constitutive laws [16]. In particular, Melan’s theorem, also known as the static
shakedown theorem or the lower-bound theorem, follows a static approach with a key concept of an
admissible time-independent residual stress field and provides a sufficient condition for shakedown to
occur independently on the initial state and the path loading. On the ground of the pioneering Orowan’s
work [17] on grain plasticity, Dang Van [18] developed his famous shakedown-based approach for the
high-cycle fatigue. Generally speaking, the original Dang Van criterion and its improvements assume
that the damage occurs at the mesoscopic scale and states that fatigue does not occur if all grains reach
a shakedown state.

Although the bibliography on the ductile failure of porous materials under monotonic loads is abun-
dant and renewed, there are few papers dealing with the modeling of ductility under cyclic loadings and
most of them concern micromechanics-based numerical approaches. Moreover, all theoretical studies
using Gurson-like approach within the framework of limit analysis for the study of voided ductile media
subjected to cyclic loads. It is our belief that the natural context for such studies should be the static or
kinematic shakedown framework. Accordingly, in a our recent research [19] on shakedown analysis of
ductile porous materials with a von Mises matrix under cyclically repeated load, we have proposed a ho-
mogenized analytical macroscopic shakedown criterion by considering Gurson’s hollow sphere model.
Based on a microscopic trial stress field, we have adoptedMelan’s statical approach to determine the safe
limit domain by maximizing the size of the load domain for two limit cyclic loads : (1) the alternating
and (2) the pulsating loads. By improving the residual stress field, this approach has been extended to
handle general repeated loadings with the definition of the macroscopic stress ratio [20] :

−1 ≤ R = Σ−/Σ+ < 1 (1)

Σ− and Σ+ being the minimum and maximum load amplitude during the cyclic loading process, res-
pectively. Thus, alternating load and pulsating one can be considered as two particular loading cases
described by R = −1 and R = 0, respectively. Besides, the load case corresponding to R = 1 repre-
sents the monotonic load process for which the collapse occurs by development of a mechanism which
agreed with numerical simulations.

The aim of this work is to contribute to the theoretical and numerical studies of the effective shakedown
of ductile porous materials with an associated Drucker-Prager matrix under cyclic load by the use of
Melan’s shakedown theorem.
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2 Problem formulation
Let us consider an elementary porous cell occupying a bounded volume Ω with a smooth boundary ∂Ω.
It is composed of a single void ω embedded in an elastic-perfectly plastic solid matrix ΩM = Ω− ω.
The void is bounded by the free-traction surface ∂ω.

Drucker-Prager’s yield function of the constitutive law is defined by the convex function F of Cauchy’s
stress tensor σ :

F (σ) = σe(σ) + 3ασm − σ0 ≤ 0 (2)

where σe =
√

3
2s : s is the equivalent stress defined from the deviatoric part s of the stress tensor σ,

σm is the mean stress, σ0 represents the yield stress, and α is the pressure sensitivity factor related to
the friction angle φ by :

tanφ = 3α (3)

The relationships between the macroscopic stress Σ and macroscopic strain E fields and their local
counterparts σ and ε are obtained by the mean volume operator as follows :

Σ =
1

| Ω |

∫
Ω
σ dV (4)

The set of statically admissible stress fields is given by :

Sa = {σ s.t. div σ = 0 inΩ, σ · n = 0 on ∂ω, σ = 0 in ω} (5)

where n is the unit outward normal vector of the matrix.

The associated flow law ensures that the plastic strain rate obeys to the normality rule :

ε̇p = λ
∂F

∂σ
(σ) , (6)

where λ ≥ 0 is the plastic multiplier.

Let now (σE , εE ,uE) be the fictitious purely elastic response of the porous shell Ω under the same
load. By definition, the residual stress tensor at time t is given by

ρ = σ − σE (7)

In other words, ρ is the stress field subsisting in the structure after complete elastic unloading of Ω at the
instant t. Subsequently, the residual stress tensor is statically admissible with vanishing surface traction
on ∂Ω, that is ρ is often called a self-stress field.

For the problem under consideration, ρ belongs to the set of residual stress fields :

N = {ρ | div ρ = 0 in Ω, ρ · n = 0 on ∂ω, ρ = 0 in ω} (8)

The key idea of the statical approach is to define the admissible residual stress fields (in Melan’s sense)
ρ̄(x), such that [14] :
– ρ̄ is time-independent,
– ρ̄ is a residual stress field : ρ̄ ∈ N ,
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– ρ̄ is plastically admissible in the sense that :

∀σE ∈ S, F (σE + ρ̄) ≤ 0 in Ω at any time (9)

Moreover, if F (σE + ρ̄) < 0 in Ω at any time, ρ̄(x) is said to be a strictly admissible residual stress
field. Hence, the following theorem was proved by Melan [14] :

Melan’s theorem : If a strictly admissible residual stress field ρ̄ can be found, the body shakes down.

3 Macroscopic shakedown citerion under general cyclic loadings
For the general case, it is not possible to obtain the exact solution because of the non linearity of Drucker-
Prager yield function. Taking into account the symmetry of the hollow sphere model, the trial stress field
is considered as the sum of the two following fields :

– A heterogeneous part inspired from the exact field under pure hydrostatic loadings which is expressed
in spherical coordinates :

σ(1) = ρ̄(1) + σE(1) (10)

where the residual stress field in the inner region a ≤ r ≤ c is inspired from the exact solution [?] in
the pure hydrostatic loading :

ρ̄(1) = A0

((
1−

(a
r

)3γ
)

1 +
3

2
γ
(a
r

)3γ
(eθ ⊗ eθ + eφ ⊗ eφ)

)

− Σm+

1− f

(
1 +

1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er)

)
(11)

A0 being a constant to be determined.
The stress field in the fictitious elastic body is given

σE(1) =
Σm

1− f

(
1 +

1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er)

)
(12)

– The other part under the pure deviatoric loadings is expressed in spherical coordinates :

σ(2) = ρ̄(2) + σE(2) (13)

where a statically admissible stress field in the fictitious body, deduced from the Papkovich-Neuber
solution for the hollow sphere under the pure deviatoric load, was proposed in the previous work [20]
in the following form, in the spherical coordinates (r, θ, φ) with orthonormal frame {er, eθ, eφ} :

σE(2) = −sign(J3)Σe
3(1 − f)

{[
a3
(
18a2 + 5r2 (−5 + ν)

)
(1 + 3 cos(2θ))

2 r5 (−7 + 5ν)
− 1 + 3 cos(2θ)

2

]
(er ⊗ er)

+

[
a3
(
27a2 + 5r2 (1 − 2ν) − 3

(
21a2 + 5r2 (−1 + 2ν)

)
cos2 (θ)

)
2 r5 (−7 + 5ν)

+
−1 + 3 cos(2θ)

2

]
(eθ ⊗ eθ)

+

[
a3
(
9a2 + 25r2 (−1 + 2ν) − 45

(
a2 + r2 (−1 + 2ν)

)
cos2 (θ)

)
2 r5 (−7 + 5ν)

+ 1

]
(eφ ⊗ eφ)

+

[
3a3

(
12a2 − 5r2 (1 + ν)

)
sin(2θ)

2 r5 (−7 + 5ν)
+

3 sin(2θ)

2

]
(er ⊗ eθ + eθ ⊗ er)

}
(14)

where ν is Poisson’s coefficient, Σe the macroscopic equivalent stress and J3 the third invariant of the
macroscopic stress deviator.
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Noticing that, for the sake of shortness, the full expression of ρ̄(2) is provided in [20].

Consequently, in the matrix ΩM , the resultant two parameters-based trial stress field in the matrix can
be written as :

σ = σ(1) + σ(2) , (15)

Note that a vanishing stress field is considered in the void ω.

For a variable hydrostatic loading combined with a constant shear loading, we consider the load domain
defined by two elementary loads Σ+ and Σ−, and the axisymmetric macroscopic stress tensor, resulting
from (15), takes the form :

Σ± = Σm±1− sign(J3±)
Σe±

3
(er ⊗ er + eθ ⊗ eθ − 2eφ ⊗ eφ) (16)

Considering the yield function (2), the shakedown condition reads :[(
3γA0

2

(a
r

)3γ
− 3

2

Σm+ − Σm
1 − f

(a
r

)3)2

+

(
sign(J3+)Σe+ − sign(J3)Σe

3(1 − f)
+K(r)A2

)2

P2(r, θ)

+

(
3γA0

(a
r

)3γ
− 3

Σm+ − Σm
1 − f

(a
r

)3)
P1(r, θ)

(
sign(J3+)Σe+ − sign(J3)Σe

3(1 − f)
+K(r)A2

)]1/2
+ 3α

[
γA0

(a
r

)3γ
+A0

(
1 −

(a
r

)3γ)
− Σm+ − Σm

1 − f

−
5a3 (ν + 1)

(
3cos2θ − 1

)
r3 (−7 + 5ν)

(
sign(J3+)Σe+ − sign(J3)Σe

3(1 − f)
+K(r)A1

)]
≤ σ0

(17)

The collapse occurs by fatigue when the yield function vanishes simultaneously for the extreme values
of loading, and because (a/r)n decreases quickly when r increases, the previous condition is satisfied
anywhere in the body if it is fulfilled at r = a, we obtain :[

9

4
(γA0)2 + (K(a)A1)2 P2(a, θ) + 3 γA0 P1(a, θ) (K(a)A1)

]1/2
+ 3α

[
γA0 −

5 (ν + 1)
(
3cos2θ − 1

)
(−7 + 5ν)

K(a)A1

]
= σ0

(18)[
9

4

(
γA0 −

∆Σm
1 − f

)2

+

(
∆(sign(J3)Σe)

3(1 − f)
+K(a)A1

)2

P2(a, θ) + 3

(
γA0 −

∆Σm
1 − f

)
P1(a, θ)

(
∆(sign(J3)Σe)

3(1 − f)
+K(a)A1

)]1/2

+ 3α

[
γA0 −

∆Σm
1 − f

−
5 (ν + 1)

(
3cos2θ − 1

)
(−7 + 5ν)

(
∆(sign(J3)Σe)

3(1 − f)
+K(a)A1

)]
= σ0

(19)

Due to the linear elastic response when shakedown occurs, one has :

τ =
γA0

K(a)A1
=

γA0 − ∆Σm
1−f

∆(sign(J3)Σe)
3(1−f) +K(a)A1

=
−∆Σm

1−f
∆(sign(J3)Σe)

3(1−f)

(20)

Replacing γA0 and γA0 − ∆Σm
1−f , leads to the closed-form macroscopic fatigue criterion :

∆Σm
σ0

= −τ(1 − f)
2
√

9
4
τ2 + 3τP1(a, θ) + P2(a, θ)

9
4
τ2 + 3τP1(a, θ) + P2(a, θ) − 9α2

(
τ − 5(ν+1)(3cos2θ−1)

(−7+5ν)

)2

∆(sign(J3)Σe)

σ0
= 3(1 − f)

2
√

9
4
τ2 + 3τP1(a, θ) + P2(a, θ)

9
4
τ2 + 3τP1(a, θ) + P2(a, θ) − 9α2

(
τ − 5(ν+1)(3cos2θ−1)

(−7+5ν)

)2

(21)

In which two events may occur :
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– When J3+ > 0, the condition is satisfied if it is fulfilled at the equator θ = π/2 where the left part of
the previous shakedown condition (18) and (19) takes its maximum value, where

P1(a,
π

2
) =

3(5ν + 5)

2(5ν − 7)
P2(a,

π

2
) =

225(7ν2 − 13ν + 7)

(5ν − 7)2

– When J3+ < 0, the condition is satisfied if it is fulfilled at the poles θ = 0 and θ = π where the left
part of the previous shakedown condition (18) and (19) takes its maximum value, where

P1(a, 0) =
3(5ν + 5)

−5ν + 7
P2(a, 0) =

225(ν2 + 2ν + 1)

(5ν − 7)2

The above macroscopic criterion (21) is established to predict the fatigue limit for hollow sphere with
Drucker-Pragermatrix in a parametric formwhich depends on the generalizedmacroscopic stress triaxia-
lity τ = − 3∆Σm

∆sign(J3)Σe
. More precisely, the fatigue limit stress curve can be obtained from this macro-

scopic criterion for different fixed values of τ .

The set of equations (21) constitutes the main finding in this study.

4 Illustration and assessment of the effective shakedown criterion
The goal of this section is to illustrate the shakedown yield and to validate the accuracy of the analy-
tical results by comparison with numerical ones. To this end, incremental elastic-plastic finite element
simulations, which reconstructs in a step-by-step manner the structural response to the applied path loa-
ding, are carried out by the use of the software Abaqus Standard [21] by considering a quarter of an
axisymmetric model with a spherical void.

The computations are performed for different porosities f ∈ {0.001, 0.01}, different friction angles
φ ∈ {10◦, 20◦, 30◦} and with σ0 = 20 MPa,E = 14 GPa and ν = 0.2. Moreover, the following loading
cases are considered for instance : alternating loadR = −1 and intermediate cyclic load withR = 1/5.

Figure 1 – Comparison between the yield surfaces obtained by the analytic criterion and simulations
under alternating loadings (R = −1) for porosity f = 0.01 and φ ∈ {10◦, 20◦, 30◦}.

Fig.1 plotted the macroscopic shakedown domain computed from the established macroscopic fatigue
criterion (21) under alternating loading (R = −1) for several void volume fractions (f ∈ {0.001, 0.01})
and friction angles (φ ∈ {10◦, 20◦, 30◦}). It is worth noting that the collapse by development of a
mechanism do not occur in this situation, so the safety domain is only defined by the fatigue criterion.
The effective shakedown criterion is found much smaller and completely inside the yield loci obtained
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under monotonic loads. In the particular case of pure hydrostatic loading, the numerical results fit the
exact value∆ΣSD

m = 3 (1−f)
(3/2 +3α)(3/2−3α) . This fact is foreseeable since the trial stress field and the residual

stress tensor contain the exact solution for the hollow sphere under hydrostatic load.

Figure 2 – Interaction curve for the intermediate loads with R = 1/5 for porosity f = 0.001 and 0.01.
The analytic safe domain is bounded by solid lines.

Figures 2 displayed the comparison between analytical results and numerical ones of the shakedown
limit for R = 0 and 1/5. Unlike the alternating load (for which R = −1), the safety domain is obtained
at the intersection of the domain defined by the new fatigue criterion and the one proposed in Guo et
al. [9], corresponding to the collapse by development of a mechanism at the first cycle. In all figures
shown hereafter, the analytic safe domain is bounded by solid lines. The second important remark is
that the shakedown safe domain is considerably reduced compared to the gauge surface corresponding
to the failure under monotonic loading. This ductility reduction is more pronounced in the dominant
compression zone (Σm < 0). In addition, these curves confirm that the effect of the friction angle on
the safe domain is negligible.

5 Conclusion
In this study we applied Melan’s shakedown theorem to derive a homogenized shakedown criterion for
ductile porous material with pressure-sensitive dilatant matrix under cyclic repeated loadings, conside-
ring the hollow sphere unit cell. The closed-form fatigue criterion in parametric form, depending on the
porosity, friction angle, Poisson’s ratio and the sign of the third invariant of the macroscopic stress ten-
sor, is able to predict the shakedown limit for all intermediate loading cases (−1 ≤ R < 1). The safety
domain is bounded by this fatigue criterion and by the macroscopic yield strength proposed by Guo et
al. [9] corresponding to the collapse by development of a mechanism at the first cycle, inside of which
the material is always stable. The established model have been assessed and validated against numerical
solutions derived by micomrchanics-based finite element computations by considering a quarter of the
hollow sphere for various configurations of porosity and frictions angles. The results provide a good
agreement for the general model and, the criterion is strictly conservative to predict the safety domain
because of the Melan’s statical approach.
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