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Résumé : 

Afin d'améliorer la précision des simulateurs de robots et de développer de nouvelles lois de commande, il est 

nécessaire d'identifier les paramètres physiques de leur modèle dynamique. Dans cet article, nous proposons 

une estimation des paramètres dynamiques du robot ABB IRB14000 (YuMi). Une méthode d'identification de 

base du robot utilisant le modèle dynamique inverse et les moindres carrés est utilisée. Les valeurs numériques 

sont présentées dans ce document pour aider les chercheurs intéressés à développer et à améliorer les résultats 

de notre propre étude. 

 

Abstract:  

In order to improve the precision of robot simulators and to develop new control laws, it is necessary to 

identify the physical parameters of their dynamic model. In this paper, we propose an estimation of the 

dynamic parameters of the robot ABB IRB14000 (YuMi). A basic identification method of the robot using the 

inverse dynamic model and the least squares is used. Numerical values are presented, in this paper, to help 

interested researchers to develop and improve the results of our own study. 
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1 Introduction 

In order to develop accurate dynamic models and to implement new control algorithms, the identification of 

dynamic parameters of manipulator robots has been focused by many researches. System identification in 

general is related to the construction of models describing the physical process mathematically. Those models 

are characterized by a structure and by dynamic parameters for which numerical values are unfortunately not 

fully provided by the manufacturers. 

In literature, identification is strongly related to statistical methods, such as the least squares method or the 

maximum likelihood method which is often applied in the industry. IDM_LS method, generally adopted in 

robotics, is based on the inverse dynamic model (IDM) and the least squares (LS). This technique has been 

successfully applied for the experimental identification of robots [1] [2] and is a preliminary step for other off-

line or on-line approaches [3] [4]. The output error method (OE) compares the behaviour of the real system with 

the mathematical model. This model is iteratively modified to optimize parameters, in order to bring the 

behaviour of the model closer to that of the real robot. The criterion often used is the quadratic norm of the 

output error. This method can be implemented in open loop or in closed loop (CLOE) [5][6]. 
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[7] proposed a new method of closed-loop output error based on a closed loop simulation of the robot, by 

minimizing a quadratic error between the actual and simulated joint torques using the robot's direct and inverse 

dynamic model called DIDIM. This new method has been successfully applied to rigid manipulator robots. A 

comparison between DIDIM and CLOE was made by [8] and an extension of DIDIM method has been validated 

for robots with flexible joints in [9]. 

For systems with few parameters, the Extended Kalman Filter (EKF) was used since the 1980s. The algorithm 

estimates both the state of the system and the parameters using the direct dynamic model. However, the EKF 

algorithm is sensitive to initial conditions and the velocities of convergence is very slow [10]. [11] discussed the 

identification of parametric linear models with continuous time.  

In our study, the experimental work was done on the ABB IRB 

14000 collaborative robot named YuMi (Fig. 1). 

 YuMi is the first safe collaborative industrial robot with two 7 

DOF (Degree of Freedom) arms. This Dual-arm ABB robot is 

ideal for assembling small parts with a load capacity of 500g for 

each arm. It is controlled with the ABB IRC5 control system. The 

two arms of the robot are the same manipulator of 7 DOF with 

two different bases. For this reason, it is sufficient to identify the 

parameters of a single arm. 

The first part of this paper presents the kinematic and dynamic 

model of YuMi robot. The identification method used, the method 

to optimize identified parameters and the method to calculate the 

precision of these parameters are described in the second part. In 

the last part, the experiments carried out to measure and filter the 

data, the results obtained and the perspectives of this work are 

presented. 

 

2 Model of Yumi  

2.1 Kinematic model of YuMi robot  

Table 1. DHM parameters of YuMi dual arm robot 

The modelling of a manipulator robot requires first of all 

to establish its kinematic model (KM). We therefore 

opted for the method of Denavit-Hartenberg Modified 

(DHM) frequently used in robotics. 

The DHM parameters for a single-arm of YuMi robot are 

listed in Table 1 and are used for robot dynamic 

modeling, using the 𝑆𝑌MORRO+ software [12]. 

Those parameters are also used for robot simulator with 

Peter Corke Toolbox on MATLAB [13]. 

 

2.2 Dynamic identification model  

To obtain the dynamic model of the robot, the most common approaches are the Lagrange method, the Newton-

Euler method and the Kane method [14]. The inverse dynamic model of the robot is written in the following 

form: 

 

Articulation α𝑖  (rad) 𝑑𝑖(cm) 𝑟𝑖  (cm) 𝜃𝑖  (rad) 

1 0 0 16.6 𝑞1 − π 

2 π/2 3 0 𝑞2 − π 

3 π/2 3 25.15 𝑞3 

4 -π/2 4.05 0 𝑞4 − π/2 

5 -π/2 4.05 26.5 𝑞5 + π 

6 -π/2 2.7 0 𝑞6 − π 

7 -π/2 2.7 3.6 𝑞7 + π 

Fig. 1 Robot IRB14000 from ABB (in LCFC lab) 



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019 
 

 

Γ  mdi =  IDM (𝑞, �̇� �̈�, X) 

 

(1)  

Where 𝑞, �̇�, �̈�, Γ  mdi , are respectively the vectors [7×1] of the positions, velocities, accelerations and joint 

torques, X being the vector [N𝑝 × 1] of the standard dynamic parameters (inertial and friction) of robot (N𝑝 is 

the number of standard parameters). This model is written in linear form (2) as a function of basic dynamic 

parameters (called basic inertial). These parameters were calculated analytically with a simple calculation of the 

robot's mechanical energy [15]. 

 

Γ  mdi =  LIDM(𝑞, 𝑞,̇  �̈�) χ (2) 

The dynamic model of a robot depends on a number of rigid articulation modelling parameters. There are 11 

basic inertial parameters for each joint. We can define a vector χ (3) to represent the parameters of inertia of the 

joint j. 

[ 𝑋𝑋𝑗   𝑋𝑌𝑗  𝑋𝑍𝑗  𝑌𝑌𝑗  𝑌𝑍𝑗  𝑍𝑍𝑗  𝑀𝑋𝑗𝑀𝑌𝑗  𝑀𝑍𝑗𝑀𝑗𝐼𝑎𝑗]𝑇 (3) 

 

 where XX, XY, XZ, YY, YZ, ZZ are 6 components of the inertial tensor, MX, MY, MZ are 3 components of 

the first moment of inertia, M is the joint’s mass and  I𝑎 is the inertia of the actuator. 

For our robot, we have 11 × 7 inertial parameters. Some inertial parameters are grouped together with 

SYMORO+ software, which helped us reduce the number of inertia parameters from 77 to 50 parameters by 

eliminating parameters that cannot be identified. Grouped terms have the index R (ZZR1 for example).  

Γf𝑗=  Fc𝑗 sign ( �̇�𝑗) +  Fv𝑗  �̇�𝑗 +  Off𝑗   (4) 

 

In addition to inertial parameters, there are 14 friction parameters (coefficients of viscous friction Fvj and 

Coulomb friction Fcj  for each joint) and 7 offset parameters Offj that take into account the offset of the joint 

torque and the asymmetry of Coulomb friction. (4) represents the simplified model of dry and viscous friction 

in joint j used for nonzero velocities. In total, there are 71 dynamic parameters to identify. 

 
 

3 Identification method 

3.1 IDIM_LS method 

Applied successfully on several industrial robots and prototypes, IDIM_LS is the most common method for 

identifying robot parameters. It makes possible estimating the parameters using the inverse dynamic model and 

least square, knowing the torque and the articular positions. Fig. 2 shows the principle of the IDIM_LS 

identification method [7]. Due to model errors and measurement noises, the real motor torques 𝚪 are different 

from the model torques 𝚪  𝐦𝐝𝐢  (5). 

Γ = LIDM(𝑞, 𝑞,̇̂  �̂̈�)χ +  ε   (5) 

 

With ε is errors and measurement noises. 

The first and second derivatives of the positions 𝑞,̇̂  �̂̈� are estimated using a centred derivative filter. This filter 

is applied after deleting the absurd samples via a median filter of order 5. 

 After sampling (5) and regrouping the samples for all the axes, we obtain overdetermined system (6). (7) 

represents an ordinary solution for this system, utilizing the least square method by minimizing 𝜌. 

 

𝑌(Γ ) = 𝑊(�̂�, �̂̇�, �̂̈�)𝜒 + 𝜌 (6) 

�̂� = (𝑊𝑇𝑊)−1𝑊𝑇 . 𝑌 = 𝑊+𝑌 (7) 
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Where: 

- Y is the vector of sampled Γ measurements. 

- W is the observation matrix constructed by LIDM sampling. 

- 𝜌 is the residue vector. 

 

Fig. 2 Principle of IDIM_LS identification method [7]. 

 
 

3.2 Optimization  

We have noticed that the identified vector �̂� using the least squares method has unrealistic values, that do not 

correspond to the physical sense of the parameter. For this reason, a numerical optimization was done.  

This optimization is based on estimating parameters by minimizing different criteria. The first criterion is the 

quadratic error between the measured and estimated torques. The implementation of numerical optimization is 

done with “fminsearch” function of the MATLAB software.  

 

 

 
 

Fig. 3 shows the principle of the identification method with the optimization of the parameters. The inertia 

matrix of the robot must be strictly positive. Therefore, this second criterion was added to the optimisation 

program.  

Fig. 3 Identification method with parameter optimization algorithm. 
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The decomposition of the eigenvalues of the inertia matrix allow us to check its positive definiteness, either with 

Sylvester's theorem or with a Cholesky decomposition. According to [16], Sylvester's theorem allows to find 

conditions that the parameters must check to obtain the positive definiteness. The Cholesky decomposition has 

the advantage that a tolerance is defined and takes into account the noise and the measurement error [3].  

We opted for two steps: In the first step, we checked the positivity of the eigenvalues of the inertia matrix 

throughout the identification trajectory. In the second step, using the optimal estimated parameters derived from 

the first step, we verified the criterions in all the workspace by changing the robot trajectory. 

 

3.3 Precision of estimated parameters 

 During the optimization iterations, poorly identified parameters that do not affect the calculation of estimated 

torques were eliminated. This allowed us to reduce the number of basic parameters from 71 to 57. Those essential 

basic parameters simplify the dynamic model of the robot and minimize the error between this model and the 

robot's real dynamic model. 

Using classical method with statistical properties, we calculate the precision of the identified parameters. The 

calculation method was detailed in work done by [17]. 

We admit that the robot model based on the estimated parameters has the same behaviour as the real robot. The 

error 𝑒 between the vector of estimated parameters �̂� and the optimal value 𝜒∗ is calculated by (8). 

 

𝑒 = �̂� − 𝜒∗ (8) 

𝜎2 = 𝐶𝑅𝑇/(𝑛 − 𝑑) (9) 

where n is the number of measurement samples, d the number of estimated parameters, 𝜎2 is the noise variance 

and CRT is a criterion applied for the calculation of the precision defined by [17]. 

 

%𝑃𝜒 ̂ = 100 × √diag 𝜎2/𝜒 ̂ (10) 

The accuracy of the identified parameters is calculated with (10). 𝑃𝜒 ̂ is an indicator of the uncertainty of 

estimated parameters.  

 

4 Experimentation and results 

4.1 Data measurement and filtering 

The articular positions q and the torque references Γ are acquired at the frequency of 250 Hz while the robot 

follows an exciting trajectory. We performed the measurements using a robot simulator (RobotStudio) and a 

measurement software (Test Signal Viewer). This trajectory (Fig. 4) was defined in order to ensure a good 

conditioning of the observation matrix W. To calculate the matrix observations W, the articular velocities and 

accelerations are estimated using a limited bandwidth derivative filter. This filter is applied after deleting the 

aberrant samples via a median filter of order 5. Fig.4 shows the exciting articular trajectories of each axis and 

its corresponding velocities. Due to the fact that some robot articulations have the same position and speed 

throughout the whole chosen trajectory. The figure shows overlapping position and speed graphs for the 7 Yumi 

robot joints. 

The overdetermined system (6) is obtained after parallel filtering of the experimentally measured torques Y and 

of each noisy column of the matrix W. We used for that 5th-order lowpass Butterworth filter round-trip with a 

cut-off frequency of 10 Hz. The estimated parameters �̂�  are the linear least squares solution of this 

overdetermined system. They were estimated using the basic parameters defined by [18], and calculated 

automatically using the SYMORO + software. 
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4.2 Results 

Before presenting the results obtained, we would like to clarify why we have chosen the optimization method. 

We used the classical method to identify dynamic parameters. It is impossible to have dynamic robotic system 

with negative inertia matrix or negative motor inertia. However, the results we found showed that it was the case 

for some identified parameters. Therefore, a different method is needed. 

After applying the identification method with parameter 

optimization algorithm explained in section 3.2 (Fig. 3) to a 

single arm of the YuMi robot. We were able to identify 57 

parameters with sufficient accuracy. The estimated friction 

and offsets parameters for the axes 1, 2, 3 and 4 were 

identified with a good accuracy, varying from 0.3% to 1.9%. 

However, for the axes 5, 6 and 7 (4, 5 and 6 according to 

robot manual numbering) the inaccuracy is bigger but still 

acceptable and varies between 2% to 7% (Table 2). From the 

results shown in (Fig. 5, 6) the same remark can be made for 

the torques. The NRMSE (Normalized Root-Mean-Square 

Error) values  between measured and estimated torques are 

3.65%, 1.37%, 9.24% and 3.77% for the 1, 2, 3 and 4 axes, 

and 16.38%, 16.86% and 13.02% for 5,6 and 7 axes 

respectively (according to our chosen order of axes 

numbering). 

Table2. Results of identification of friction parameters and 

offsets 

 
Parameter   𝜒 ̂𝑜𝑝𝑡𝑖𝑚   %𝑃𝜒 ̂ 

 Off1  3.117 8.05 
 Off2  1.241 5.82 
 Off4  -0.447 7.26 
 Off5  0.08 11.88 
 Off6  -0.17 3.40 
 Off7  -0.011 15.93 
 Fc1  2.175 0.38 
 Fv1  0.367 0.99 
 Fc2 1.826 0.52 
 Fv2  0.758 0.61 
 Fc3  0.718 1.05 
 Fv3 0.183 1.97 
 Fc4  0.836 0.89 
 Fv4  0.18 1.90 
 Fc5  0.228 2.87 
 Fv5  0.044 6.65 
 Fc6  0.183 3.58 
 Fv6  0.039 7.52 
 Fc7  0.132 4.93 
 Fv7  0.045 6.43 

Fig. 4 Exciting trajectories and speeds used for the 7 

joints identification. 

Fig. 5 Comparison of measured, filtered and estimated 

torques for joints 1 (a), 2 (b) and 3 (c) 
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Note that (𝑋𝑋, ….), (𝑀𝑋 …), Fv, Fc  and Off are expressed respectively in kg. 𝑚2 , kg. m, N. m. s, N. m and 

N. m. 

 

Table 3. Identified Inertial parameters 

 

Table 3 presents the estimated numerical values of 

the dynamic inertial parameters. In general, the 

accuracy is acceptable and varies between 0.68% 

and 18%. High inaccuracies are observed in inertial 

parameters that have small numerical values (for 

example XXR4 and MXR6). The identification of 

those parameters can be improved with more 

optimization iterations.  

The inaccuracy of the last 3 joints is influenced by 

the used simple friction model (4) and can be 

improved by developing a more complex friction 

model for the YuMi robot. 

Moreover, during experiments, those axes were more 

sensitive to noises during acceleration phase. This can 

be linked to the PID cascaded control structure used 

for each joint of the robot [19].  

 

 

Conclusion  

This article presents the dynamic identification of the parameters of the ABB IRB14000 collaborative industrial 

robot. The identification was done using the inverse dynamic model and least squares method. We subsequently 

found that the vector identified using the least squares method has unrealistic values, which do not correspond 

to the physical significance of the parameter. For this reason, a numerical optimization was carried out. We 

Param 𝜒 ̂ %𝑃𝜒 ̂ Param 𝜒 ̂ %𝑃𝜒 ̂ 

ZZR1 0.064 14.58 MYR4 0.244 1.71 
MXR1 0.093 8.35 XX R5 -0.023 10.44 
MYR1 0.391 7.58 XYR5 -0.038 2.93 
XXR2 0.214 8.94 XZR5 0.01 4.43 
XZR2 0.101 2.57 ZZR5 -0.0047 6.94 
ZZR2 0.224 6.30 MXR5 0.0304 2.43 
MXR2 0.267 4.09 MYR5 0.0135 8.00 
MYR2 -0.784 0.68 XYR6 0.0078 7.12 
XXR3 -0.105 10.55 XZR6 -0.0017 13.94 
XYR3 -0.112 6.45 ZZR6 0.0033 10.20 
XZR3 -0.027 12.65 MXR6 0.0041 15.18 
YZR3 0.139 5.07 MYR6 -0.0166 6.69 
ZZR3 0.054 11.55 YZ7 -0.0013 12.04 
MXR3 0.106 3.88 ZZ7 0.0007 6.87 
MYR3 0.025 8.03 MY7 0.0033 7.35 
XXR4 -0.033 14.70 Ia3 0.0319 18.65 
XYR4 0.026 4.53 Ia4 0.0663 2.80 
XZR4 0.009 16.92 Ia5 0.0119 7.17 
MXR4 0.054 7.01    

Fig. 6 Comparison of measured, filtered and estimated torques for joints 4 (a), 5 (b), 6 (c) and 7 (d). 
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optimized the estimated vector of the parameters with numerical optimization in MATLAB, to have practical 

values consistent with their physical meaning. Numerical values were presented to help researchers interested 

in developing and improving the results of this study. In the perspective of this work, it is proposed to replace 

the friction model used by a more complex and precise model or to use more exciting trajectories than those 

used in our study. 
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