
24
ème

 Congrès Français de Mécanique Brest, 26 au 30 Août 2019 
 

 

 

Modeling and Numerical Investigations in the 

Behavior of One-dimensional Bubbly Cavitating 

Flows Through a Venturi 

 

M. ZAMOUM
a
, R. BOUCETTA

a
, M. KESSAL

a 

 

a. Laboratoire Génie Physique des Hydrocarbures LGPH, Faculté des Hydrocarbures et de la 

Chimie FHC, Université M’hamed Bougara de Boumerdès, 35000, Algérie 

m_zamoum2000@yahoo.fr  

 

Abstract : 

 

The research refers to the numerical study of cavitation phenomena when liquid-gas flow was passing 

through the venturi nozzle. The dynamics of the cavitating bubbles are modeled by the use of the mass 

and momentum phase’s equations, which are coupled with the Rayleigh-Plesset equation of the N 

bubbles dynamics. However, assuming that the same initial conditions of all bubbles are identical and 

that all bubbles are equi-distant from each other simplifies the governing equations. The effects of the 

bubble population size and the upstream void fraction on flow parameters are investigated. The 

numerical resolution of the previous equations set (ODE) let us found that the bubble radius change 

dramatically with upstream void fraction and An instability appeared just after the throat of the 

Venturi for both cases one bubble (N=1) and two bubbles (N=2). Indeed, for the case of one bubble, 

the instability occurs for an upstream void fraction αs=5.37x10
-3

, which corresponds to a critical 

bubble radius rc=4. Whereas, for bubble number N=2, the same phenomenon occurs for αs = 

1,344x10
-1

, with Rc=1.5. Also, obtained numerical result shown that, as the number of bubbles is 

increased, the natural frequency and the damping of the bubbles decrease. Beside, the distance 

between bubbles decrease leads to increase of the damping and the natural frequency. 
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NOMENCLATURE 
A     dimensionless cross-sectional area of the  

Venturi, *
s

* AA   

A*   cross-sectional area of the Venturi  
*
sA    upstream cross-sectional area of the Venturi  

Cp    fluid pressure coefficient,   2*
s

*
L

*
s

* uρ21/pp   

D      distance between bubbles 

k       polytropic index for the gas inside the bubbles 
*

p    fluid pressure 

*
sp  upstream pressure 

*
vp    vapor pressure 

R    dimensionless bubble radius, *
s

* RR  

Rc    dimensionless critical bubble radius at 

which flashing flow occurs 
*
sR   upstream bubble radius 

Re   Reynolds number, *
E

*
s

*
s

*
L μRuρ   

S*   surface tension of the liquid 

t      dimensionless time, *
s

*
s

* Rut    

t      time 

u     dimensionless fluid velocity, *
s

* uu    

u*   fluid velocity 
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*
su   upstream fluid velocity 

V    volume of the bubble, 3Rπ34V   

We Weber number, **
s

2*
s

*
L S/Ruρ  

x*  Eulerian coordinate 

x    dimensionless Eulerian coordinate, *
s

* Rx  

Greek Letters 

   void fraction of the bubbly fluid 

c  upstream void fraction at which flashing occurs 

s    upstream void fraction 

   dimensionless radius of the Venturi throat 

   dimensionless bubble population per unit 

liquid volume, 3*
s

*Rη    

*η    bubble population per unit liquid volume 

γ     ratio of specific heats of the gas inside  

the bubbles 
*
Eμ   effective dynamic viscosity of the liquid 

     dimensionless fluid density    
*
Lρ   density of the liquid 

σ     cavitation number,   2
s

*
L

*
v

*
s uρ21pp    

 

1 Introduction  
 

The Venturi generally corresponds to the measurement of flow rates in single-phase flow. Its study in 

the case of a bubble flow makes it possible to visualize the effect of the angles converging and 

diverging (through the adimensional radius β of the Venturi) on the mixing parameters. Multiphase 

flow measuring is generally more difficult. The density of a gas-liquid mixture depends upon the 

volume fraction of the gas, and the phases densities. The investigations of homogeneous steady-state 

cavitating nozzle flows, using spherical bubble dynamics with a polytropic thermal process [1], have 

shown some flow instabilities illustrated by flashing flow phenomenon.  

       The flow model, a generally used, is a nonlinear continuum bubbly mixture which is coupled with 

the dynamics equation of the bubble. A three equations model was first proposed by van Wijngaarden 

[2 ,3] and has been used for studying steady and transient shock wave propagation in bubbly liquids, 

by omitting the acceleration of the mean flow. This model has been also considered by Wang and 

Brennen [1], in the case of converging-diverging nozzle, with an upstream variable void fraction. It 

was observed that significant change of the flow characteristics depends strongly on the latter and a 

critical bubbles radius have been obtained. Considering the gas nucleation rate, as a source term in the 

mass conservation equation of the bubbles, Delale et al [4] have used the previous model for the same 

converging-diverging nozzle. They have concluded that the encountered flow instability can be 

stabilised by thermal damping. Several authors have also considered the bubble dynamics equation 

under an appropriate form to the choose example. Among these, Wang and Brennen [5] have written it 

in time and radial coordinate, for a bubbly mixture, where the shock wave have been studied for 

spherical cloud of cavitating bubbles. Besides effect of the shocks on the bubbles interactions have 

been also analysed. The same Rayleigh-Plesset equation has been used by Gaston et al [6] by 

modelling the bubble as a potential source. The stream function has been written in function of spatial 

coordinate and the source term. They have analysed the effect of complex interactions through a 

Venturi. By introducing liquid quantity and motion equation in a spatial Rayleigh-Plesset dynamics 

relation, Moholkar and Pandit [7] have obtained a global dynamic equation witch have been resolved 

by in a three steps method. In their work they have studied the effect of the downstream pressure, the 

Venturi pipe ratio, the initial bubble size an the upstream void fraction, on the dynamics of the flow. 

Considering a one bubble motion in a Venturi, Soubiran and Sherwood [8] have obtained a dynamic 

equation of the flow, based on the, acting different force. 

       A. Ooi and R. Manasseh [9] have studied coupling effects on acoustic signature from non-linear 

oscillations of a group of micro bubbles by the use of Rayleigh-Plesset equation, where bubbles 

number and their natural frequency are significantly dependant.  
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       More recently, Ashrafizadeh and Ghassemi [10] have experimentally and numerically investigate 

the effect of the geometrical parameters, such as throat diameter, throat length, and diffuser angle, on 

the mass flow rate, critical pressure ratio and application rang of small-sized cavitating venturi (CVs). 

The obtained results show that the CVs in very small size are also capable in controlling and 

regulating the mass flow rate while their characteristic curves are similar to those of ordinary CVs 

with larger throat sizes. Also, by decreasing the throat diameter of CVs, the choked mode region, 

critical pressure and discharge coefficient decrease. By decreasing the diffuser angle from 15 to 5 

degrees in the numerical simulations, the critical pressure ratio increases and the discharge coefficient 

remains constant. By increasing the throat length of CVs, the critical pressure ratio decrease while 

discharge coefficient does not shown any changes. 

       Also, a variable area cavitating venturi was designed and investigated experimentally by Tian et al 

[11]. Four sets of experiments were conducted to investigate the effect of the pintle stroke, the 

upstream pressure and downstream pressure as well as the dynamic motion of the pintle on the 

performance of the variable area cavitating venturi. The obtained results verify that the mass flow rate 

is independent of the downstream pressure when the downstream pressure ration is less about 0.8. The 

mass flow rate is linearly dependent on the pintle stroke and increases with the upstream pressure. The 

discharge coefficient is a function of the pintle stroke; however it is independent of the upstream 

pressure. They concluded that the variable area cavitating venturi can control and measure the mass 

flow rate dynamically.  

  Zamoum and Kessal [12] have numerically investigate the dynamical of a bubbly flows in a 

transversal varying section duct (Venturi). The mass and momentum phases equations, which are 

coupled with the Rayleigh-Plesset equation of the bubbles dynamics are used. The effects of the throat 

dimension and the upstream void fraction on flow parameters are investigated. The numerical 

resolution of the previous equations set let us found that the characteristics of the flow change 

dramatically with upstream void fraction. Two different flow regimes are obtained: a quasi-steady and 

quasi-unsteady regime. The former is characterized by large spatial fluctuations downstream of the 

throat, which are induced by the pulsations of the cavitation bubbles. The quasi-unsteady regime 

corresponds to flashing flow in which occurs a bifurcation at the flow transition between these 

regimes.   

   The present work considers new modele of bubbly cavitating flow. This modele is composed by 

mass and momentum equation coupled with the dynamic equation of N bubbles. The Rayleigh-Plesset 

equation for a system of equally sized bubbles at the same distance from each other was derived. The 

effects of upstream void fraction, bubbles number and distance between bubbles on the bubble radius 

oscillation after passing the Venturi are investigated. 

 

 2 Basic Equation 

 
 
The liquid is assumed to be incompressible and the interaction liquid duct wall is neglected. The total 

upstream bubbles population is uniform without coalescence, and the relative motion between the 

phases ignored. Gas and vapour densities are neglected in comparison to one of the liquid. The 

bubbles are assumed to have the same initial radius Rs and external friction is neglected.             

         Then the mixture density can be expressed in function of bubble population:   

  

   VL   1  

Where  txRV ,34 3  is the volume of the bubble.  
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The dynamics of the bubbles can be modelled by the Rayleigh-Plesset equation [9] 
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Where R
*
(t) is the instantaneous bubble radius, Rs

*
 the upstream bubble radius, µE

*
 the effective 

dynamic viscosity of the liquid, L
*
 the density of the liquid, ps

*
 the upstream pressure, pv

*
 the vapor 

pressure, S
*
 the surface tension of the liquid, p

*
 the fluid pressure and pext

*
 is the imposed external 

pressure field, where: 

 

                                                                          pext
*
=psi

*
+pA,i(t)                                                            (2) 

 

Where  
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ρ
p  is the pressure scattered by the other bubbles. 

 

Where sij=sji is the distance of bubble i from bubble j, pA,i(t) the applied pressure of any external field 

on bubble i. 

       Combining equations (1) and (2) gives the following coupled governing equation for coupled 

bubble oscillations, 

 

  

  












































































Nbub

1j

**
i,A*

*
j2*

j*
ij

*
L

*

*
*
v

*

k3

*

*
s

*
s

*
*
v

*
s*

*

*

*
E

2

*

*

2*

2
**

L

tP
dt

dR
R

dt

d

s

ρ

R

S2
pp

R

R

R

S2
pp

dt

dR

R

μ4

dt

dR

2

3

dt

Rd
Rρ

         (3) 

 

We assume that sij =D= constant. Thus the distance of any bubble to any other bubble in the bubble 

population is constant. We further assume that the same external driving pressure field acts on all the 

bubbles, that is, PA,1(t
*
)= PA,2(t

*
)= PA,3(t

*
)= PA,4(t

*
)= PA(t

*
), then Ri

*
(t

*
)= Rj

*
(t

*
)= R

*
(t

*
).  

 

Substituting into equation (3) yields: 
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Equation (4) represents the idealized case where all the bubbles are equally spaced, have the same 

initial conditions. 

The non-dimensional form equation (4) is giving by: 
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 Where x/ut/Dt/D   is the Lagrangian derivative,   2
s

*
L

*
v

*
s uρ21ppσ   is the 

cavitation number, pv
*
 is the partial pressure of vapor inside the bubble. 

*
E

*
s

*
s

*
L μRuρRe   is the 

Reynolds number, *
Eμ is the effective viscosity of liquid. 

**
s

2*
s

*
L S/RuρWe   is the Weber number, 

S* is the liquid surface tension and *
Lρ  is the liquid density.  

Continuity and momentum equations of the bubbly flow (Wang and Brennen 1998) [1] are: 
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Where    33 Rπη341/Rπη34t,xα   is the bubble void fraction, u(x, t) the fluid 

velocity.      2**** 21/,, sLs uptxptxCp   the fluid pressure coefficient, p(x, t) the fluid pressure, 

*

sp  the upstream fluid pressure, and 
*

su  
is the upstream fluid velocity. 

       Equations (5), (6) and (7) constitutes a simple model of one-dimensional flowing bubbles fluid 

with nonlinear bubbles dynamics. 

 

2.1. Steady-State Solutions 

 

Assuming steady-state conditions, all the partial time derivative terms in equations (5),(6) and (7) 

disappear. Then, the former equation set is transformed into an ordinary differential equation set, with 

only one independent variable (x): 

  

                                                         (1-)uA=(1-s)=constant                                                            (8) 
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The corresponding initial conditions are: 

 

R(x=0)=1, U(x=0)=1, Cp(x=0)=0 
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And the axial variation of the cross sectional takes the following from: 
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Where  is the dimensionless radius of the Venturi throat and x the distance along the axis. In the 

present work it is assumed: =0.5, x1=3.0, x2=5.7, x3=6.7, x4=10.5. This corresponds to an ISO 

standard Venturi (British Standards Institution) with a 21° converging section and 15° diverging 

section. 

 

 

 

                  Flow                                                         

                                                                                            2a                           2a      

 

 

                                     

                                      0                     x1                x2             x3                 x4                              x5              
 

Fig. 1 Bubbly flow through a Venturi  

 
 

3 Results and Discussion 
 
Equation set (8)-(9) and (10) is resolved by the use of a fourth order Runge-Kutta scheme, with some 

flow conditions (Table 1). 

 

Initial parameters Water characteristics at 20°C 

*
sR =100µm 

*
su =10m/s 

k=1.4 

Re=33 

=0.8 

We=137 

*
Lρ =1000kg/m

3
 

*
Eμ =0.03Ns/m

2
  

*
Lμ =0.001Ns/m

2
 

S*=0.073N/m 

 

Table1. Initial condition flow and water characteristics 

 

Bubble void fraction effect 

 

Five different upstream void fractions (αs) are used in the computation to study the effect of the 

upstream void fraction on the flow structure through the Ventuti. The case of αs =0 corresponds to the 
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incompressible pure liquid flow, the results are shown in Figures 2 which correspond to the non-

dimensional bubble radius distribution for both cases one bubble (N=1) and two bubbles (N=2). An 

instability inception can be remarked in this figure for both cases, which is located just after the throat 

of the Venturi. 

  

     Figure 2 shown that the bubble size reach the maximum after passing the nozzle throat of the 

venturi with increase in the upstream void fraction, the maximum size of the bubbles increases and 

bubble frequency oscillation decrease, this maximum size is shifted further downstream after it reach 

the critical radius (instability occurs), the bubbles growth without bound in the calculation, this 

instability occurs when the bubble radius reaches a critical value Rc, also the void fraction growing 

leads to large amplitudes of the bubble radius. It can be observed that, for the case of one bubble, the 

instability occurs for an upstream void fraction αs=5.37x10
-3

, which corresponds to a critical bubble 

radius rc=4. whereas, for bubble number N=2, the same phenomenon occurs for αs = 1,344x10
-1

, with 

Rc=1.5. This difference is due to the bubble interaction. In the practice rc correspond the flashing flow 

inception, which is illustrated by an instability of the parameters flow. The analytical expression for Rc 

is obtained by Wang and Brennen (1998), Rc(/2c)
1/3

, where c is the upstream void fraction at 

which flashing flow occurs.  

       

 
 

 

Fig. 2. Bubble radius distribution as a function of position in the flow for different upstream void 

fractions. s=0 correspond to the solution of the Rayleigh-Plesset equation. Dimensionless radius of 

the Venturi throat =0.5. For the case N=2, the distance between two bubbles D=5Rs=500µm  

 

 

Bubble number effect 

 

The effect of the presence of more than one bubble is showed in figures 3. This figure shows the non-

dimensional bubble radius distribution as a function of position in the flow for bubbles number N=1, 

N=2 and N=3, with upstream void fraction s=1x10
-3

. The distance between bubbles for the cases N=2 

and N=3 is D=5Rs=500µm. It can be observed here that the increasing of the bubbles number leads to 

decreases of the bubble oscillation frequency and the damping of the signal. 
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Fig. 3. Bubble radius distributions as a function of position in the flow for different bubble number. 

Distance between bubbles D=5Rs=500µm. Upstream void fraction s=1x10
-3

 

 

Distance between two bubble effects 

 

The figure 4 shows the effect of distance between bubbles on the bubbles oscillations radius. The 

increase distance between bubbles has an important effect on the damping radius and frequency 

oscillations. However; for very large distances between bubbles, the radius distribution is similar for 

those of one bubbles evolution. 

 
Fig. 4. Bubble radius distribution as a function of position in the flow for various values of distance 

between two bubbles (N=2). 
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3 Conclusion 
 
A new modele mass and momentum equation coupled with the Rayleigh-Plesset equation for a system 

of equally sized bubbles at the same distance from each other was derived, and is validated for the case 

small size distance between bubbles. The effects of upstream void fraction, bubbles number and 

distance between bubbles are investigated. The numerical resolution of the equations set (ODE) found 

that the bubble radius change dramatically with upstream void fraction and an instability appeared just 

after the throat of the Venturi for both cases one bubble (N=1) and two bubbles (N=2). Indeed, for the 

case of one bubble, the instability occurs for an upstream void fraction αs=5.37x10
-3

, which 

corresponds to a critical bubble radius Rc=4. Whereas, for bubble number N=2, the same phenomenon 

occurs for αs = 1,344x10
-1

, with Rc=1.5. Also, the result found that the natural frequency and the 

damping of the bubbles system decrease as the number of bubbles increase. Otherwise, the increase 

distance between bubbles has an important effect on the damping radius and frequency oscillations. 

However; for very large distances between bubbles, the radius distribution is similar for those of one 

bubbles evolution. 
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