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Résumé :
The hydrodynamic stability of ablation flows is a key issue in laser-driven inertial confine-
ment fusion (ICF) where a sufficiently symmetric implosion of a spherical pellet is expected to
achieve thermonuclear burn. Such flows which originate from exposing the pellet outer shell
to a growing incident heat flux, present the radial structure of an inward-propagating deflagra-
tion, or ‘ablation’, wave where a shock wave precedes a subsonic heat front that coindices with
the leading edge of the heated material expansion wave. Inherently unsteady, these flows are
compressible, strongly accelerated and highly nonuniform with a steep heat front, owing to the
strong nonlinearity of the heat transport and the intense incident heating. These features, in
addition to non-trivial boundary conditions at the shell external surface and shock front, are
sources of non-modal thermo-acoustics effects [1, 2]. However non-modal instability growth in
ablation flows relevant to ICF has never been studied so far. The development of instabilities
leading to nonlinear phenomena in ablation flows could result into the loss of symmetry of
the implosion and could finally inhibit ignition. Transition mechanisms in ablation flows are
therefore of primary importance to ICF ignition.

Here we investigate non-modal effects in planar radiative ablation waves by using self-similar
ablation solutions to the Euler equations with nonlinear heat conduction, without further ap-
proximation, as model base flows representative of the early stage of an ICF pellet implosion
[3]. Pseudo-spectra of the local approximation of the perturbation evolution operator reveal a
potential for strong transient growth. Because of the base flow unsteadiness, our non-modal lin-
ear stability analysis relies on a direct-adjoint method. The flow boundary deformations, at the
material external surface and shock front, as well as their adjoint variable counterparts enter
this method formulation. Both optimal initial conditions and receptivity to perturbations of the
incident heat flux and external surface pressure are considered. Different definitions of objec-
tive functionals are investigated, some in relation with experimentally measurable quantities.
Optimal response computations are carried out for terminal times and perturbation transverse
wavelengths which are determined on the basis of pellet implosion features. Computed optimal
responses are physically analysed in terms of diffusion and propagation, with the help of a de-
composition into linear hyperbolic waves — corresponding to acoustic, entropy, vorticity and
radiation-conductivity waves [3] — for a nonuniform heat-conducting flow.
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Abstract :

A non-modal linear hydrodynamic stability analysis of ablation waves is carried out for the first
time. This analysis is performed for unsteady self-similar solutions in slab symmetry of the
Euler equations with nonlinear heat conduction, using a direct-adjoint method that results from
a Lagrangian-based optimization problem. Such solutions are considered in connection with
inertial confinement fusion (ICF) experiments where the hydrodynamic stability of ablative
flows has been identified as a key issue to the achievement of thermonuclear burn. Inherently
unsteady, these flows are compressible, highly nonuniform with a steep heat front, and bounded
by a material surface and a shock front — features that are possible sources of non-modal
thermo-acoustics effects. Non-modal effects are presently exhibited on a particular ablation wave
solution. This finding raises the question of the existence and consequences of such effects in
configurations of X-ray driven ablation that are more representative of ICF experiments, which
is the object of an ongoing investigation.

Mots clefs : écoulement d’ablation, fusion par confinement iner-
tiel, compressible, conduction non-linéaire de chaleur, effets non-
normaux, méthode direct adjoint, perturbations optimales

1 Introduction
The hydrodynamic stability of laser-driven ablation flows is a key issue in inertial confinement
fusion (ICF) where a sufficiently symmetric implosion of a spherical pellet is expected to achieve
thermonuclear burn. Such flows which originate from exposing the pellet outer shell to a
growing incident heat flux, present the radial structure of an inward-propagating deflagration,
or ‘ablation’, wave: a shock front precedes a subsonic heat front that coincides with the leading
edge of the heated material expansion wave [4, chap. 2] [5, vol. 2, chap. 10, §8]. Inherently
unsteady, these flows are compressible, strongly accelerated and highly nonuniform with a steep
heat front, owing to the strong nonlinearity of the heat transport and the intense incident
heating.

At the early stage of an ICF implosion, the hot outer part of the shell is accelerated toward
inner colder and denser layers while the forerunning shock front propagates inward through
the shell. This ‘shock transit phase’ is favourable to ablative Richtmyer–Meshkov and ablative
Rayleigh–Taylor instabilities [4, chap. 8],[6]. Hydrodynamic instabilities emerging during this
phase seed the subsequent stages of the pellet implosion with perturbations. In particular,
perturbations seeded at the start of the acceleration phase of an implosion undergo severe
growth, as shown by many studies on the subject, possibly leading to unacceptable loss of
symmetry and a failure to achieve the condition of thermonuclear burn. The understanding of
hydrodynamic perturbation dynamics during the shock transit phase is therefore of primary
importance to ICF.

Perturbations may arise from various sources: external pressure or heat flux inhomogeneities,
outer surface defects, inhomogeneities inside the shell or roughness at the shell-fuel interface.
Due to this multiplicity, experiments and multiple–physics simulations are often focused on
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isolating a particular perturbation (i.e. outer surface roughness) for a single pattern (e.g.
Legendre mode). In such cases simulations have been found to be in good agreement with ex-
periments [7, 8]. However this way of proceeding gives poor results when dealing with ‘native
roughness’ targets [7, 9]. Indeed, in such cases, in which no perturbation initially dominates
the others, the isolated mode approach fails to render perturbation growth originating from
interaction between different perturbation modes. Furthermore, such growth may occur despite
the fact that each of these interacting modes could be decaying in time. Perturbation amplifi-
cation computations can describe such growth provided that they are started from appropriate
initial conditions. However it is not feasible to compute the amplification of a sufficiently large
set of eligible initial conditions in order to identify which of them lead to an amplification,
and, above all, to the maximum amplification. As formalized in [10], the information driving
the short time evolution of a dynamical system must be searched in the eigenfunctions of its
linearized evolution operator rather than merely in this operator eigenvalues which may only
be indicative of the system long time behaviour. The set of method and tools for obtaining
this information is known as non-modal ananlysis and has been successfully applied to many
linear and nonlinear problems in the field of hydrodynamic stability (see [11] and references
therein). Non-modal analysis enables the study of these eigenfunctions and the identification
of optimal perturbations leading to the maximum amplification at a given time, or optimal
boundary conditions when dealing with a receptivity problem. Non-modal analysis has never
been applied to the hydrodynamic stability of ablation flows and the present work aims at
changing this fact.

We first (§ 2) present the ablation wave modeling that we are using before introducing base
flow and linear perturbation equations. An adjoint problem is then established (§ 3) from
the Lagrangian based formulation of a linear perturbation optimization problem. This adjoint
problem allows us to set up a direct-adjoint looping procedure in order to reach an optimal
inital condition maximizing a functional depending on perturbations. Such a procedure is
applied to a particular case of ablation flow (§ 4), exhibiting non-modal effects. These results
are finally discussed (§ 5), together with perspectives for radiation driven ablation flows.

2 Model
Classically in ICF, hydrodynamic instabilities have been investigated either by multiple-physics
simulations, either by modal stability analyses of idealized ablation flows (i.e. steady, quasi-
isobaric, discontinuous, etc.) [12]. An alternative to these two opposite approaches uses self-
similar solutions to the Euler equations with nonlinear heat conduction as base flows [13, 14, 15].
Such solutions, known since [16], present the advantage of rendering exactly nonuniformity and
unsteadiness of ablation waves, and have been exploited to model ICF-type ablation flows [17,
18, 3]. Indeed these self-similar flows present the essential characteristics of an ablation wave,
namely: (a) a leading shock front, (b) a quasi-isentropic compression (‘post-shock’) region, (c)
an ablation layer and (d) an expansion wave where heat-condution dominates (the ‘conduction
region’). The present non-modal stability analysis is based on these self-similar solutions which
are in slab symmetry. This slab approximation is reasonable insofar as the shock transit phase
corresponds to the beginning of a target implosion: curvature effects for sufficiently small
perturbation transverse wavelengths and convergence effects are actually negligible.
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2.1 Governing equations
We consider the motion of a polytropic gas in a semi infinite slab subject to an irradiation
flux and material pressure at its external boundary. The external irradiation flux is sufficiently
high so that nonlinear heat conduction dominates any other diffusive effect (e.g. viscosity).
However the fluid temperature is sufficiently low for radiation pressure and radiation energy to
be negligible compared to material pressure and internal energy. The material is considered at
local thermodynamic equilibrium, allowing us to use a fluid model to describe its motion. As-
suming that this motion is along the x direction of Cartesian system of coordinates (O, x, y, z),
the equation of motion are written, in dimensionless form and in the Lagrangian coordinate
m, where dm = ρdx, as [18]


∂t1/ρ− ∂mv = 0,
∂tv + ∂mp = 0,
∂t(e+ v2/2) + ∂m(pv + ϕ) = 0,

(1)

where ρ, v, p , e denote, respectively, the fluid density, velocity, pressure and specific inter-
nal energy, and the heat flux is related to the fluid density and temperature T through the
expression

ϕ = −ρmT nρ∂mT ≡ Ψ(ρ, T, ∂xT ), m ≤ 0, n > 0. (2)

This system is closed by the dimensionless equation of state

p = ρT,

e = T

γ − 1
, with γ the adiabatic gas exponent.

Self-similar reductions of (1) arise if the incident heat flux and pressure at the external surface
follow specific power laws [16, 13], namely

ϕ(0, t) = Bφt3α−3 , p(0, t) = Bpt2α−2, for t > 0, with α = 2n− 1
2n− 2

, (3)

and for an initial state given by (ρ, v, T ) = (1, 0, 0) for m ≥ 0. For certain values of the
boundary parameters (Bp,Bϕ), such solutions present the features of an ablation wave extending
from the flow external surface (m = 0) through an ablation front up to the fore-running shock
front [3, 18]. In particular, all the peculiarities of an ablation wave driven by a nonlinear heat
conduction are described in a smooth manner, without any further approximation, including
the temperature and density stratification of the conduction region. In the present case, highly
accurate solutions to (1), (3) are obtained by means of an adaptive multidomain Chebyshev
spectral method [20].

2.2 Linear perturbations
Three-dimensional linear perturbations of the above self-similar ablative waves are considered
using an Eulerian description in the coordinate system (m, y, z). The resulting system of
partial differential equations in physical space is replaced by a one-dimensional system in the
yz-Fourier space. With the notation f̂ for the yz-Fourier component of the base flow quantity
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Figure 1: Self-similar ablation wave for the electron heat conduction model of Spitzer [19]
(m = 0, n = 5/2) and boundary condition parameters (Bp,Bφ) = (0.124, 0.120) of (1). Spatial
profiles in the coordinate m at time t0 = 1 of the fluid density ρ, longitudinal velocity v and
heat flux ϕ.

f with transverse wavenumber k⊥ =
√
k2
x + k2

y, this system reads

∂tÛ = LÛ ≡ −A∂2
m2Û −B∂mÛ −CÛ , (4)

with Û =
[
ρ̂ v̂ d̂⊥ T̂

]>
, where d̂⊥ denotes the Fourier component of the transverse divergence of

the transverse velocity, and with the matrices A, B and C defined by

A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 C−1

v ρΨT ′

 , B =


0 ρ2 0 0
T 0 0 ρ

0 0 0 0
C−1
v Ψρ C−1

v p 0 B44

 ,

C =


ρ∂mv ρ∂mρ ρ 0
T∂mρ/ρ ρ∂mv 0 ∂mρ

k2
⊥T/ρ 0 0 −k2

⊥
C41 ρ∂mT

′ C−1
v T C44

 ,

B44 = C−1
v [∂m(ρΨT ′) + ΨT ] , C41 = C−1

v

(
∂mΨρ − ρ−1 ∂mϕ

)
,

C44 = C−1
v

[
ρ∂mv + ∂mΨT − k2

⊥ρ
−1 ΨT ′

]
.

The longitudinal perturbation of the heat flux expands as ϕ̂x = ρ̂Ψρ + T̂ ΨT + ρΨT ′∂m T̂ where
Ψρ, ΨT and ΨT ′ stands for the partial derivatives of Ψ (2) with respect to the density, the
temperature and the temperature gradient. Similarly, the transverse perturbation of the heat
flux expands as ∇⊥ · ϕ̂⊥ = k2

⊥ΨT ′ T̂ .

The external surface and shock front are also perturbed and their linear deformations are
denoted X̂ext(t) and X̂sf(t), respectively. Perturbed boundary conditions arise from a first order
expansion of (3) [14] between the mean position of the boundary surface and its perturbed
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position. At the external surface, perturbations in density and heat flux are imposed:

ρ̂ext(t) = ρ̂(0, t) + X̂ext(t)ρ(0, t)∂mρ|m=0 , (5a)
ϕ̂ext(t) = ϕ̂(0, t) + X̂ext(t)ρ(0, t)∂mϕ|m=0 , (5b)

and the following kinematic relation at this material surface applies

v̂ext(t) = ˙̂
Xext(t) = v(0, t) + X̂ext(t)ρ(0, t)∂mv|m=0 (5c)

At the shock front, Rankine–Hugoniot relations are perturbed to the first order and take the
form of four linear equations relating flow perturbations at the shock front, to shock front
deformation X̂sf , shock front deformation velocity ˙̂

Xsf , and to the upstream state perturbation,
say

RH
(
Ûsf−, X̂sf ,

˙̂
Xsf , Ûsf+

)
= 0. (6)

System (4) is composed of a parabolic scalar subequation stemming from the total energy
conservation, and a hyperbolic subsystem corresponding to the equations of isothermal gas
dynamics. Therefore (4) is incompletely parabolic [21] and the problem (4)-(6) is well-posed
if at each boundary: one boundary condition is applied on the parabolic subequation and one
boundary condition is applied on each of the incoming waves of the hyperbolic subsystem. For
a =‘ext’ and ‘sf’, boundary condition operators are formalized as

BCha

(
Û |a, X̂a

)
= 0,

BCpa

(
Û |a, X̂a

)
= 0,

where BCpa is a scalar operator and the dimension of BCha equals the number of incoming
waves at the given boundary.

3 Optimal perturbations through a Lagrangian
In the present work we are interested in finding the initial states {Û(t0,m), X̂ext(t0), X̂sf(t0)}max-
imizing an objective functional J depending only on the final state {Û(T,m), X̂ext(T ), X̂sf(T )},
where {Û , X̂ext, X̂sf} are solutions of (4)-(6) where ρ̂ext and ϕ̂ext are kept to zero. For this
purpose we choose to perform the optimization in an unconstrained space through the defini-
tion of a Lagrangian where Lagrange multipliers are introduced to enforce evolution equations,
boundary conditions and a constraint on the initial conditions. This Lagrangian reads

L(Û , X̂, Û†, ν̂†, η̂†, µ̂†, β†) =

J −
∫ msf ,T

m=0,t=t0
Û†
(
∂tÛ − L(Û)

)
dtdm−

∫ T

t0

ν̂†aBC
h
adt

−
∫ T

t0

η̂†aBC
p
adt−

∫ T

t0

µ̂†afadt− β† (I −K0) , (7)

where subscripts a are summed over boundaries: ‘ext’ and ‘sf’. Scalar quantities fa stand for
the evolution equations of X̂a, taken from (5) and (6), and K0 is the normalization constant
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Lagrange multiplier Corresponding constraint

Û † Evolution equation for perturbations
ν̂†ext and ν̂†sf Hyperbolic boundary conditions at the external surface and shock front
η̂†ext and η̂†sf Parabolic boundary condition at the external condition and shock front
µ̂†ext and µ̂†sf Evolution equation for boundary deformations

β† Normalization of the initial condition

Table 1: Lagrange multipliers used in (7).

for initial conditions. Lagrange multipliers used in (7) are defined in Tab. 1.
The normalization functional I depends only on the initial state t0 and may differ from the
objective functional J . The optimum lies in the stationary points of the Lagrangian [22].
Differentiating with respect to the state variables leads to the adjoint problem

∂tÛ
† = L†Û† ≡ A>∂2

mÛ
† + (2 ∂mA−B)>∂mÛ† + (∂2

mA− ∂mB +C)>Û†, (8a)

BCha
† = 0, BCp

†

a = 0, (8b)

dtX̂†a = ˙̂
X
†
a, (8c)

where ˙̂
Xa

†
and X̂†a are scalar linear combinations of ν̂†a, η̂†a and µ̂†a. The adjoint problem (8a) is

to be integrated backward in time, from a terminal condition, to be well posed. The terminal
condition reads

Û†(T,m) = ∇
Û |T
J , (9a)

X̂†a(T ) = ∇
X̂a|T
J . (9b)

Differentiating with respect to the control parameter, Û(t0,m), X̂a(t0), gives the optimality
conditions. Away from an optimum we have

∇
Û |t0
L = Û†|t0 − β†∇Û |t0I, (10a)

∇
X̂a|t0

L = X̂†a|t0 − β†∇X̂a|t0I. (10b)

At an optimum, the right-hand-sides in (10) vanish. Solving (4) and (8), along with (5) and
(10), simultaneously would require a global approximation over the time interval, resulting in
a resource intensive procedure. Classically, direct and adjoint problems are solved iteratively,
using forward and backward temporal integrations, from a given starting initial condition.
Successive initial conditions of the direct problem are found thanks to an iterate power method
[23] or a relaxation method [24]. Both methods give similar results. Numerical solutions to the
direct system (4)-(6) and to the adjoint system (8), with proper initial conditions, are obtained,
in the variable m, using the same multidomain pseudospectral method as for the base flow
and, in time, with a three-step implicit-explicit Runge–Kutta scheme. Boundary conditions are
handled using a penalty method while matching conditions at subdomain interfaces are enforced
exactly. The numerical codes for the direct and adjoint problems perform computations over
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Figure 2: (a) Density perturbation profiles of the starting initial conditions given by (thick
lines): a translation of the base flow (red), a uniform perturbed state (green) and a perturbed
state resulting from a previous external heat flux perturbation (blue). Common optimal initial
density profile (thick black line) for a final time T = 2. (b) Objective functional for final times
T = 1.01, 1.025, 1.05, 1.075, 1.1, 1.2 and 1.6, from bottom to top, for k⊥ = 0.1.

each subdomain in parallel using the MPI paradigm with a single process per subdomain.
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Figure 3: (a) Intensity map in the variables (m, t) of the local Euclidean norm of the solution
to (4) with optimal initial condition for final time T = 1.05 and k⊥ = 0.1. (b) Time evolution
of the deformations of the external surface (blue), the ablation front (green) and the shock
front (red).

4 Optimal perturbation of a particular ablation flow
We consider the case of an ablation flow resulting from the direct illumination of the target
by a laser. In that case the irradiation flux corresponds to the laser light, propagating in the
expanding material up to the critical surface where the density exceeds a critical value. This
critical surface corresponds, in our model, to the external surface of the ablation flow where the
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laser energy is deposited and a material pressure is applied. Heat is transported via electron
heat conduction [5, chap. VII, §12]. Base flow profiles are shown on Fig. 1. The ablation front
is defined as the location of the temperature gradient length minimum. The latter defines the
characteristic length of the ablation front, laf(t). The conduction region, of length lcond(t),
extends from the external surface (m = 0) up to the ablation front (maf = 0.1013), and
the quasi-isentropic post-shock region extends from the ablation layer up to the shock front
(msf = 0.3). Lengths scale as l(t) = tα L due to self-similarity, where L is a reduced length
(Tab. 2).

max M 0.37
M |af 0.13
Fr |af 2.07
Lcond 1.013 10−1

LT /Ltot 2.66 10−2

Table 2: Main characteristics of the ablation flow of Fig. 1: maximum of the flow Mach number
relative to the ablation front, max M , ablation front value of this Mach number, M |af , and of the
Froude number, Fr |af , heat conduction region reduced length, Lcond, and ratio of the reduced
ablation front characteristic length LT to the ablation wave reduced length Ltot (defined in
[3]).

Computations have been carried out for various transverse wavenumbers and we present here
the results for k⊥ = 0.1. The objective functional is chosen as the L2 norm of state variables,
namely

J = 1
2

∫ msf

0
Û2(T,m)dm+ 1

2

(
X̂2

ext(T ) + X̂2
sf(T )

)
. (11)

The convexity of this functional with respect to our set of control parameter is not established.
However a numerical experiment shows that initiating the optimization procedure with three
different initial conditions leads to the same optimal condition (Fig. 2a). Computations are
carried out on a 20 domain grid, each domain containing 50 collocation points. An iteration
is composed of the integration of (4) from t0 to T and (8a) backward, and requires 7 105 time
steps for T = 4. Convergence is reached when the L2 norm of the difference between two
successive initial conditions is below a defined threshold (10−5). Reaching convergence requires
between 20 and 30 iterations depending on the final time.

At first, optimal initial conditions are obtained for final times ranging from 1.01 to 1.6. The
envelope of their L2 norm across time shows that maximum amplification occurs at T = 1.05
(Fig. 2b). It has been observed that perturbations behave like travelling waves, here termed
pseudo-characteristic waves, with reflection and coupling at the external surface, the shock
front and in the ablation layer. Such pseudo-characteristic waves have been found appropriate
for describing perturbations propagating in the conduction region and the post-shock region
of ablation flows [3, 25] and their nature is recalled in Tab. 3. Optimal initial conditions and
their evolution up to the optimal time are analysed by characterizing them in terms of these
longitudinal pseudo-characteristic waves.
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Figure 4: Projection on pseudo-characteristic variables defined in Tab. 3 of the solution to (4),
for T = 1.05 and k⊥ = 0.1, in the variables (m, t): (a) Ŵ1, (b) Ŵ2, (c) Ŵ3 and (d) ω̂/ρ.

Maximum amplification The optimal initial condition realizing the maximum amplifica-
tion, at T = 1.05, is projected onto the pseudo-characteristic waves described in Tab. 3.
This initial condition is very weak in the conduction region, presents a peak in the ablation
layer and two oscillations over the post-shock region corresponding to: in phase upstream and
downstream propagating acoustic waves, and, in opposite phase, an entropy wave (Fig. 4).
Perturbations mainly evolve in the post-shock region and the ablation layer (Fig. 3a). Indeed,
the final time is too short, relatively to propagation velocities, for a significant propagation of
perturbations. As a result the external surface remains unperturbed while the ablation front
and the shock front undergo distortions (Fig. 3b). Moreover, heat diffusion is negligible in the
post-shock region and its effects in the ablation layer is much weaker than wave couplings.
The present transient growth is therefore mainly due to local constructive interactions between
pseudo-characteristic waves (Fig. 4) rather than interactions between the different regions of
the flow through such waves. Maximum amplification occurs while the upstream, downstream
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Wave conduction region post-shock region
Ŵ1 Heat conductivity quasi-isentropic acoustic
Ŵ2 quasi-isothermal acoustic quasi-entropy
Ŵ3 Downstream quasi-isothermal acoustic Downstream quasi-isentropic acoustic
ω̂/ρ Vorticity Vorticity

Table 3: Definition of the pseudo-characteristic waves used for analysing flow perturbations.

acoustic and entropy waves are superimposed and in phase (Fig. 4a, b and c), in addition to
the arrival of the main contribution of vorticity at the ablation front (Fig. 4d).

As noted, maximum amplification occurs at a final time, T = 1.05, for which only local effects
act and non-local effects do not have time to develop. However, the shock transit phase of an
actual ICF target may last much longer than this maximum amplification time. Indeed, during
this phase, the external surface, ablation front and shock front may interact several times via
travelling waves and heat diffusion across the conduction and post-shock regions. Hence, non-
local effects should arise in addition to local interactions and it is of interest to determine the
optimal initial condition for such a regime.
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Figure 5: Intensity map in the variables (m, t) of the local Euclidean norm of the solution to
(4) with optimal initial condition for final time T = 4 and k⊥ = 0.1. (b) Time evolution of
the deformations of the external surface (blue), the ablation front (green) and the shock front
(red).

Amplification at the time horizon of the shock transit phase The terminal time is
chosen to be consistent with the duration of a shock transit phase. Simulations have shown
that during this phase a few interactions between the shock front and the ablation front occur
through acoustic and entropy/vorticity waves. Here, the value of T = 4 satifies this condition
(Fig. 6a, b and c). As for the maximum amplification case, the present optimal initial condition
displays higher levels in the post-shock region than in the conduction region although initial
perturbations in this region are no longer negligible. The same arrangement of acoustic and
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entropy waves is observed in the post-shock region but over a single spatial lobe. In the
conduction region, the optimal initial condition is dominated by acoustic waves. External
surface and shock front deformations undergo strong transient growth each time travelling
waves interact with them, before relaxing to lower absolute values (Fig. 5b). At the final time,
much of the contribution to the functional J lies in the ablation layer and in the entropy
perturbations that propagate in the post-shock region (Fig. 5a). Regarding interfaces, most
of the contribution comes front the shock front deformation rather than the external surface
deformation. We note that the optimal response for T = 4 reaches a maximum at a smaller
time than the terminal time. The amplification of the ablation front deformation relatively
to its initial value is 2.2 102 at its maximum and 1.1 102 at the final time. Such final time
amplification indicates that the ablation front could remain strongly deformed at the end of
the shock transit phase. This would bring a significant seed for ablative Rayleigh–Taylor
instabilities to develop during a subsequent acceleration stage of an ICF implosion.

0 0.5 1 1.5
m

1

2

3

4

(a) sgn(·) log(1 + | · |)

t

-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5

af

sf

0 0.5 1 1.5
m

1

2

3

4

(b) sgn(·) log(1 + | · |)
t

-4

-3

-2

-1

0

1

2

3

af
sf

0 0.5 1 1.5
m

1

2

3

4

(c) sgn(·) log(1 + | · |)

t

-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2

af

sf

0 0.5 1 1.5
m

1

2

3

4

(d) log(| · |)

t

-5
-4
-3
-2
-1
0
1
2
3
4
5

af

sf

Figure 6: Projection on pseudo-characteristic variables defined in Tab. 3 of the solution to (4),
for T = 4 and k⊥ = 0.1, in the variables (m, t): (a) Ŵ1, (b) Ŵ2, (c) Ŵ3 and (d) ω̂/ρ.
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5 Discussion and conclusion
In the present work, we carry out the first non-modal stability analysis of an ablation flow.
These flows are compressible, non uniform, non stationary and present steep gradients, owing
to nonlinear heat conduction, and moving boundaries. A Lagrangian based formulation of the
optimization of linear perturbations and boundary deformations is devised. Optimal initial
conditions are computed thanks to a direct-adjoint looping. This method is applied to a
particular configuration for which we have exhibited significant transient growth for various
time horizons. These results prove the existence of non-modal effects in ablation waves, which
may be of concern to ICF experiments. They entice us to carry out a systematic non-modal
analysis of ICF-like ablation flows driven by X-ray irradiation.

Optimal perturbation computations of radiation driven ablation flows presenting characteris-
tic features of ICF target implosions are ongoing, but they are numerically more demanding.
Indeed, such flows present much steeper ablation fronts: as a comparison, their ratio of charac-
teristic lengths (see Tab. 2) range from 10−3 to 10−5. This necessarily leads to refined meshes
and smaller time steps. As a result, between 106 to 108 time steps are required for a single
direct-adjoint iteration. We believe that, similarly to electron heat conduction results presented
in this paper, convergence would be reached within 20 to 30 iterations.

We also expect to find similar local interactions for short-time optimal initial conditions, and
non local interactions for optimal initial conditions corresponding to shock transit times of
radiation driven ablation flows. Various objective functionals will be tested, corresponding to
energy norms (i.e. acoustic, rotational or total energy) or observables (i.e. optical depth or
ablation front deformations).
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