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Abstract :

We are interested in buckling for Timoshenko beam supported along its length by an elastic wall (Winkler
foundation) and subjected to a longitudinal force. We use analytical methods to determine buckling load
and mode shape rather than numerical methods. Haringx and Engesser models are compared. We show
that the rigidity of the wall solely gouverns the phenomena and that the two models are equivalent whatever
the parameters of the problem.
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1 Problem statement
We consider a plane Timoshenko model for an homogeneous straight beam of length L surrounded by an
elastic wall exerting a transverse elastic force distribution f . A longitudinal forceP is imposed at their ends
in order to reach a buckling behavior.

1.1 Cosserat formulation
The kinematics may be described in a Cartesian frame (ex, ey, ez) where ez is oriented along the beam
axis in the stress-free configuration, and the motion of the beam lies in the (ex, ez)-plane. However, for
such a Cosserat-like structure it is justified to use a moving director frame basis (d1,d2,d3) for which
d2 = ey and d3 is normal to the cross-section, last this basis is orthonormal d1 = d3 ∧ d2. As the
orientation of the beam is not uniform, this basis depends on the curvilinear abscissa S of the beam and in
contrary to Euler-Bernoulli model d3 is not necessarily tangent to the center line. The kinematics of the
beam is governed by the displacement u(S) = u1d1 + u3d3 of any point of the center-line and rotation
φ(S) = φd2 of the section. With the same formalism, the internal force acting on the beam is of the form
N = N1d1 +N3d3 where N1 is the shear force and N3 is the normal force and the moment M = M2d2

whereM2 is the bending moment. In terms of constitutive laws :

N1 = GA(
∂u1
∂S
− φ), N3 = EA

∂u3
∂S

, M2 = EI
∂φ

∂S
,
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whereA and I are the area and the quadratic moment of the cross-section, E andG are the Young modulus
and shear modulus G (including eventually a shear correction factor) of the beam material. For elastic
foundation, the force density f = −Ku1d1 where K is the rigidity modulus of the wall [1, 6, 7]. The
external compression load is P = −Pd3, P ≥ 0. Of course for linearized theory d1 ' ex and d3 ' ez.

1.2 Equilibrium relations
Equilibrium relations for this static problem states [2] :

∂N

∂S
+ f = 0,

∂M

∂S
+ (ε+ d3) ∧N = 0,

for which ε = ε1d1 + ε3d3, where ε1 =
∂u1
∂S −φ is the shear strain and ε3 =

∂u3
∂S is the longitudinal strain.

Projecting along directors, we obtain the following system:

∂N3

∂S
− κ2N1 = 0,

∂N1

∂S
+ κ2N3 −Ku1 = 0,

∂M2

∂S
+ (1 + ε3)N1 − ε1N3 = 0,

where κ2 = ∂φ
∂S and ∂di

∂S = κ2d2∧di has been used. For finite longitudinal force κ2N1 may be neglected in
first approximation, leading to a uniform longitudinal force imposed by the boundary conditionsN3 = −P .
In the same spirit ε3N1 may be neglected in the last equation (inextensible approximation). Hence we obtain
a system of linear equation that may be expressed using infinitesimal kinematical variable:

GA(
∂2u1
∂S2

− ∂φ

∂S
)− ∂φ

∂S
P −Ku1 = 0,

EI
∂2φ

∂S2
+ (

∂u1
∂S
− φ)(GA+ P ) = 0.

(1)

This is exactly the application of Haringx model for Winkler foundation [3, 4]. Note that this has been
recovered via a geometrically exact Timoshenko model justified for both small or large transformations.

1.3 Non-dimensionalization procedure
We introduce non-dimensional formulation of the problem thanks to the following variables:

% =

√
I

A
, g =

G

E
, κ =

K

E

I

A2
, η =

P

EA
. (2)

For any material g ' 1
2(1+ν) where ν is the Poisson ratio then 1

3 . g . 1
2 , For compression in the elastic

regime 0 < η < ηyield where ηyield is nothing else than the limit strain for which irreversible transformation
occurs, lastly κ = 0 in absence of foundation and κ =∞ for a rigid foundation. The kinematical variable
becomes in a non-dimensional form:

s =
S

%
, ` =

L

%
, u(s) =

u1(S)

%
, θ(s) = φ(S).
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Note that % = R
2 for circular cross-section of radiusR therefore ` is twice the slenderness ratio (then `� 1).

Therefore (1) takes the form
g(u′′ − θ′)− κu− ηθ′ = 0,

θ′′ + (g + η)(u′ − θ) = 0,
(3)

where we have used the convention ∂f
∂s ≡ f

′ for any function f(s).
Another model widely used for buckling is proposed by Engesser [5] for which the non-dimensional equi-
librium relations are in case of Winkler foundations:

g(u′′ − θ′)− κu− ηu′′ = 0,

θ′′ + g(u′ − θ) = 0.
(4)

2 Secular relations and eigenfunctions
For harmonic solution u(s) = Ueiks and θ(s) = Θeiks, the linear differential system becomes KV = 0

whereV = (U,Θ)T and the (hermitian) rigidity matrix is, for (3) and (4) respectively:

KH =

(
gk2 + κ ik(g + η)

−ik(g + η) k2 + g + η

)
, KE =

(
k2(g − η) + κ ikg

−ikg k2 + g

)
. (5)

Non-trivial solutions arise if det (K) = 0 what may be written as a secular equation :

PH(η, κ) = g(k4 − k2η + κ) + k2(κ− η2) + ηκ.

PE(η, κ) = g(k4 − k2η + κ) + k2(κ− k2η).
(6)

By solving P(η) = 0 we find a polynomial with respect to η whose real positive roots are

ηH =
−gk2 + κ+

√
(gk2 + κ)(gk2 + 4k4 + κ)

2k2
, ηE =

gk2

g + k2
+

κ

k2
. (7)

They are presented in figure (1) for various values of κ. Conversely, for fixed η, P is a second degree
polynomial with respect to k2. Hence u(s) and θ(s) have the general form

u(s) = aeik1s + be−ik1s + ceik2s + de−ik2s,

θ(s) = Ξ(k1)(ae
ik1s − be−ik1s) + Ξ(k2)(ce

ik2s − de−ik2s),
(8)

where a, b, c and dwill be defined by boundary conditions. Here±k1 ±k2 are the two roots of P(k2) = 0.
Note that we used K11U + K12Θ = 0 therefore Θ = iΞU where iΞ = −K11

K12
, in details

ΞH =
gk2 + κ

k(g + η)
, ΞE =

k2(g − η) + κ

kg
. (9)
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Figure 1: Secular equations (7) for various κ and g = 2
5 .

3 Boundary conditions and eigenmodes
Without lost of generality, we consider a pinned-pinned beam for which (non-dimensional) boundary con-
ditions are in terms of kinematical variables u(s) = 0, θ′(s) = 0 at s = 0 and s = `. This forms a set of
four linear equations in terms of X = (a, b, c, d)T that may be written algebraically as MX = 0 with

M =


1 1 1 1

k1Ξ(k1) k1Ξ(k1) k2Ξ(k2) k2Ξ(k2)

eik1` e−ik1` eik2` e−ik2`

k1Ξ(k1)e
ik1` k1Ξ(k1)e

−ik1` k2Ξ(k2)e
ik2` k2Ξ(k2)e

−ik2`

 . (10)

Again, non trivial solutions exist if det (M) = 0 what gives us the following relation:(
k1Ξ(k1)− k2Ξ(k2)

)2
sin(k1`) sin(k2`) = 0. (11)

Direct computation shows that k1Ξ(k1) 6= k2Ξ(k2). First it is observed that k1 and k2 play a similar
role therefore we focus on k ≡ k1 in the following. According to (11) non-trivial solutions exist only if
sin(k`) = 0, this implies that k must be real and more precisely

k =
nπ

`
, n ∈ N∗. (12)

We should notice that in order to respect linearization hypothesis we should guarantee that the mode number
is less than the slenderness ratio (n < `).
According to equation (10), the modal amplitude may be obtained up to an arbitrary constant, by solving:

AY = −aZ, where Y = (b, c, d)T ,
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with Aij = Mij and Zi = Mi1 for 1 ≤ i ≤ 3 and 2 ≤ j ≤ 4. Fixing a = 1 and k = nπ
` we find:

u(s) = cos(
nπ

`
s), (13)

θ(s) = −Ξ(
nπ

`
) sin(

nπ

`
s). (14)

Hence general form of the eigenmode of each models is identical even if Ξ(k, η, κ) may apriori differs.

4 Interpretation and conclusion
Till now n is not fixed, in practice the first buckling mode is defined as η0 = min

n
(η(k)) where k = nπ

`

what leads to the determination of n that counts the number of arches when buckling occurs. Since η(k) is
a convex function (see Fig.1), we can replace this approach by a continuous one by finding kmin such that
∂η
∂k

∣∣∣
kmin

= 0. Then n is the rounded value of kmin `π and of course still η0 = η(nπ` ). In practice, according
to (7):

Haringx model
∂ηH

∂k
=
g
(
2k6 − κk2

)
− κ

(
κ+

√
(gk2 + κ) (gk2 + κ+ 4k4)

)
k3
√

(gk2 + κ) (gk2 + κ+ 4k4)
= 0,

Engesser model
∂ηE

∂k
=

2g2k

(g + k2)2
− 2κ

k3
= 0

(15)

Using Taylor expansion for small k, this conditions leads to k4 = κ for the two models. This requirement
is independent to the material parameter g and gives a simple estimation of the number of arches n:

n =

⌊
`

π
κ

1
4

⌋
. (16)

Using Taylor expansion of (7) up to O(k4), the critical load becomes for both models:

η = 2
√
κ = 2 k2. (17)

Lastly, combining with k4 = κ, the modal amplitudes are approached by

ΞH = ΞE = k(1− k2

g
)

(
= κ

1
4 (1−

√
κ

g
)

)
. (18)

This shows the high influence of the wall rigidity that uniquely defines the buckling load (17), the modal
amplitude (18) and the wavelength of buckling modes as λ = 2π

k = 2πκ−
1
4 . Without wall the critical Euler

load is determined by the slenderness ratio as the first arch is alway involved, then `
π

√
η = 1, in our case

n = `
π

√
η
2 and no buckling occurs if `

π

√
η
2 < 1.

In figure 2 the behavior of k and η satisfying ∂η
∂k = 0 are plotted for various κ. For small rigidity of the

foundation κ � 1 the two models coincides with the approximation proposed. This is not the case as the
rigidity of the wall increases. However, it must be noticed that the proposed models are accompanied by
some physical hypotheses. First, 0 < η < ηyield where ηyield ' 2 ·10−3 for steel-like material or' 5 ·10−2

for fiber reinforced composite. Second k . 1 in order to respect linearized hypothesis. These criteria are
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Figure 2: Solutions k and η for which ∂η
∂k = 0 versus κ. Comparison between Haringx and Engesser model

with g = 2
5 .

satisfied only for κ� 1 and the yield limit is always more restrictive. In other words, buckling may occurs
only if the foundations are not too rigid and the maximum rigidity atteignable in order to have buckling
is κmax = η2yield/4. According to the magnitude of ηyield for any material, the approximation proposed
in this section are all justified. In conclusion, Engesser and Haring models can’t be distinguished through
buckling analysis of beam supported by elastic foundations.
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