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Résumé :  
 

Cet article propose un modèle numérique homogénéisé d'éléments finis non locaux, similaire à la 

théorie du gradient II de Mindlin [1], pour évaluer la résistance à la compression  des composites fibres 

longues carbone / époxy à l'échelle mésoscopique / structurelle. Le cadre de cette modélisation non 

locale est plus général que celui de [2] pour simuler le phénomène de microbuckling dans les composites 

UD et tissés. Le modèle numérique non local développé est implémenté dans le sous-programme User 

Elément (UEL) d’ABAQUS ©, ce qui permet de simuler le comportement de cas 2D et 3D. Un 2D 

élément non locale (NL U32) super-paramétrique continu (𝐶1) est développé pour le cas élastique 

isotrope linéaire. Différents résultats de tests sont présentés pour valider le modèle FE non local pour 

les cas 2D, en comparant les résultats d'un élément non local homogénéisé avec un élément iso-

paramétrique d'Abaqus et en comparant le comportement mécanique avec une microstructure 

composite 2D discrétisée à l’aide d’éléments classiques d’ABAQUS ©. 

 

Abstract :  
 

A homogenized non-local finite element model is proposed in this article, similar to Mindlin's II gradient 

theory [1] to assess the compressive strength of the carbon/epoxy long fiber composite at the 

mesoscopic/structural scale. The framework of this non-local modelling is more general that of [2] to 

assess microbuckling phenomenon in UD and woven composites. The developed nonlocal numerical 

model is implemented in User Element (UEL) subroutine for analysis in ABAQUS ©, which permits to 

simulate the behavior of 2D and 3D cases. A 2D continuous (𝐶1) super-parametric non-local element 

(NL U32) is developed for linear isotropic elastic case. Various tests results are presented to validate 

the non-local FE model for 2D cases, by comparing results of homogenized non-local element with 

ABAQUS © iso-paramteric element and then by comparing mechanical behavior/response with 2D 

composite microstructure, modelled using ABAQUS © classical elements. 

  

Mots clefs : Nonlocal model, Compression, Long-fiber composites 
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1 Introduction 
 

Composite materials continue to gain popularity in various industries like aerospace, automotive, naval, 

medical, etc. primarily due to their ability to reduce weight. One of the main advantages of composite 

materials is that they can be designed to obtain a wide range of properties by altering the type and ratios 

of constituent materials, their orientations, process parameters, and so on. Composites also have high 

mechanical properties with a low weight, which makes them ideal materials for automotive and 

aerospace applications. Other advantages of composites include high fatigue resistance, toughness, 

thermal conductivity and corrosion resistance. The main disadvantage of composites is the high 

processing costs, which limit their wide-scale usage. 

 

The compressive failure of long carbon fiber composites is due to complex mechanisms. The knowledge 

of this material is important for the design of composite structures [3], because the compressive strength 

and stiffness of laminates is assumed less than their tensile strength. The damage mechanism in long 

fiber composites is complex and depends on many parameters. Competing modes of compressive failure 

exist, including delamination, fiber failure and elastic and plastic microbuckling. ‘Elastic 

microbuckling’ is a shear buckling instability and the matrix deforms in simple shear, whereas ‘Plastic 

microbuckling’ is also a shear buckling instability, which occurs at sufficiently large strains for the 

matrix to deform in non-linear manner [4]. 

 

 

Figure 1: Plastic microbuckling phenomenon in UD composites[2] 

 

Many experimental investigations conducted by various researchers over the years (UD composites: [5-

7]; Woven composites: [8-10]) confirmed that, composite with fibers having initial misalignments, when 

loaded under compression, the shear stresses are influenced by the angle between fibers and loading 

directions. Resin (epoxy matrix) maintains the fiber misalignment. But, when the compressive load 

increases, the fiber transmits to the matrix a non-linear shear load. As the matrix has non-linear behavior, 

the loss of stiffness increases the initial fiber misalignment, the microbuckling appears. When fiber 

deformation reaches higher than critical value, formation of kink band/shear band occurs (see Fig. 1). 

Consequently, this leads to decrease in compression strength and failure of composite. Therefore, the 
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main parameters that influence the microbuckling and kink band formation are: a) Matrix physical non-

linearity and b) Presence of fiber initial wavy imperfection/undulation. There are many articles in the 

literature regarding the modeling of composites compressive behavior, particularly the microbuckling 

phenomenon as a local instability of UD composites (local models: [11- 14]). However, each model is 

limited to particular cases and only few researchers modeled the mechanism at the structural / 

mesoscopic scale (Non-local models: [15-19]). For example, Drapier et al. [2], proposed a 2D 

homogenized model (1), which takes into account fiber initial alignment defects, matrix plasticity and 

structural parameters.  

 

− ∫ {𝑓𝐸𝑓  𝑟𝑔𝑓
𝟐 𝑣′′ 𝛿𝑣′′ + 𝑺 ∙ 𝛿𝑬}𝑑Ω + 〈𝑭 ∙ 𝛿𝒖〉 = 0       ∀𝛿𝒖

 

Ω

 (1) 

 

Where, 𝑓 is fiber volume fraction, 𝐸𝑓 is fiber Yong’s modulus, 𝑟𝑔𝑓=√
𝐼

𝑆𝑓
 is fiber gyration radius, 𝑣′′ is 

fiber curvature field, 𝑺 is Second Piola Kirchhoff stress tensor, 𝑬 is the Green Lagrange strain tensor. 

The model is successful in predicting the elastic microbuckling modes, but the model is 2D and assumes 

that, the microbuckling is periodic in fiber direction, just one gradient in thickness direction is taken into 

account. Consequently, not possible to compare test results obtained with real 3D structures. Moreover, 

the prediction of both the 'distribution' and 'amplitudes' of fiber initial imperfection is still not well 

known [20]. Hence, it is necessary to extend the model of Drapier et al. [2]. Also there is no particular 

model that has been developed to assess the compressive strength on complex structure with UD and 

woven composites (2D and 3D), which takes into account the effects of gradients. 

 

Therefore, a new homogenized non-local finite element model is proposed, more general of [2] to 

simulate compressive behavior of composite materials at macro/mesoscopic scale, which permits to take 

into account the microstructural effects. The developed non-local numerical model is implemented in 

User Element (UEL) subroutine for analysis in ABAQUS ©, which permits to simulate the behavior of 

2D and 3D cases. At present, a 2D continuous (𝐶1) super-parametric non-local element (NL U32) is 

developed for linear isotropic elastic case (both the matrix and fiber is assumed to be isotropic and 

elastic). Nonlinearities (geometrical and material) will be implemented in the element in near future and 

then extension to the development of 3D non-local element. 

 

The theoretical and numerical parts of the model are presented in the section 2. Validation of the 

developed finite element for 2D case is performed by comparing results of homogenized non-local 

super-parametric element with one ABAQUS © iso-paramteric elements and then by comparing 

mechanical behavior/response with 2D composite microstructure, modelled using ABAQUS © elements 

as a final validation (section 3). 

 

2 Homogenized Non-Local numerical model 

2.1 Theoretical part 

 

From (1), it is understood that, it takes into account only the transverse fiber curvature field (𝑣′′ =
𝜕2𝑣

𝜕𝑥2
 ) 

along just one direction (UD) as shown in Fig. 2. 
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Figure 2: UD Ply loaded under compression 

 

The energy of local bending corresponds to the first term in (1). This term has been obtained by Gardin 

et al. [6] with an asymptotic development. But, it is very restrictive, and corresponds to just UD ply 

under compression. Therefore, it is necessary to extend the model for more general realistic case, taking 

into account the fiber curvature field in more complex mesostructure, for example: 2D and 3D woven, 

where fiber curvature field is not only restricted in one direction, but are randomly oriented in multiple 

directions, during compression or torsion-compression, as shown in (Fig . 3): 

 

 

Figure 3: 2D and 3D woven composite with fibers curvatures in multiple directions loaded under compression 

 

In the Mindlin’s second order strain gradient theory [1], both curvature and strain generate an energy of 

deformation. Hence, this theory is used as a main reference to develop our homogenized nonlocal model. 

The kinematics is defined by the displacement field (classical), 𝒖 = 𝑢(𝑥, 𝑦, 𝑧)𝒆1 + 𝑣(𝑥, 𝑦, 𝑧)𝒆2 +

𝑤(𝑥, 𝑦, 𝑧)𝒆3 and the generalized fiber curvature field is defined by, 𝜿 : 

 

a) 2D 

 

 
b) 3D 

The new variables,  𝜿 = 𝜅𝑖𝑗𝑘 , the fiber curvature field or higher order bending strains in multiple 

directions and 𝑪𝒇
̿̿ ̿ , the local fiber bending stiffness matrix are introduced which depends on the complex 

mesostructure. Therefore, using principle of virtual work (PVW), a new variational formulation of 

homogenized non-local numerical model in order to assess microbuckling problem at mesoscopic scale 

is written as (2): 

𝜿 =  [
𝜕
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]
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𝜿 = [
𝜕2𝑢

𝜕𝑥2
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𝜕2𝑢

𝜕𝑦2
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− ∫ {𝜻 ∙ 𝛿𝜿 + 𝑺 ∶ 𝛿𝑬}𝑑Ω + 〈𝑭 ∙ (𝛿𝒖 , 𝛿𝜿) 〉 = 0       ∀𝛿𝒖
 

Ω→3𝐷

 , ∀𝛿𝜿  (2) 

Where, 𝜻 is distributed bending moment (DBM) due to the fiber curvature fields, which leads to bending 

of fiber. It is related to the local fiber bending stiffness matrix by a linear law (3) as a first approximation, 

where, 𝑪𝒇
̿̿ ̿  contains a non-local parameters of the mesostructure material. Tensors: 𝑺 is the Second Piola 

Kirchhoff stress tensor, 𝑬 is the Green Lagrange strain tensor, and 𝑭 is the generalized external load 

vector. The 1st term in (2) corresponds to ‘internal fiber bending energy’, 2nd term corresponds to 

‘internal in-plane/classical strain energy’ and 3rd term corresponds to ‘external efforts’. 

𝜻 =  𝑪𝒇̿ 𝜿   (3) 

The fiber bending energy term, ′ 𝜻 ∙ 𝛿𝜿 =  𝑪𝒇̿ 𝜿 𝛿𝜿  ′  can be written in 3D as follows (4): 

 

[𝑪𝒇
̿̿ ̿ 𝜿 𝛿𝜿  ]

3𝐷
= 𝐴

𝜕2𝑢

𝜕𝑥2
𝛿 (

𝜕2𝑢

𝜕𝑥2
) + 𝐵

𝜕2𝑢

𝜕𝑦2
𝛿 (

𝜕2𝑢

𝜕𝑦2
) + 𝐶

𝜕2𝑢

𝜕𝑧2
𝛿 (

𝜕2𝑢

𝜕𝑧2
) + 𝐷

𝜕2𝑣

𝜕𝑥2
𝛿 (

𝜕2𝑣

𝜕𝑥2
) + 𝐸

𝜕2𝑣

𝜕𝑦2
𝛿 (

𝜕2𝑣

𝜕𝑦2
) + 𝐹

𝜕2𝑣

𝜕𝑧2
𝛿 (

𝜕2𝑣

𝜕𝑧2
)

+ 𝐺
𝜕2𝑤

𝜕𝑥2
𝛿 (

𝜕2𝑤

𝜕𝑥2
) + 𝐻

𝜕2𝑤

𝜕𝑦2
𝛿 (

𝜕2𝑤

𝜕𝑦2
) + 𝐼

𝜕2𝑤

𝜕𝑧2
𝛿 (

𝜕2𝑤

𝜕𝑧2
) + 𝐽

𝜕2𝑢

𝜕𝑥𝜕𝑦
𝛿 (

𝜕2𝑢

𝜕𝑥𝜕𝑦
) + 𝐾

𝜕2𝑢

𝜕𝑥𝜕𝑧
𝛿 (

𝜕2𝑢

𝜕𝑥𝜕𝑧
)

+ 𝐿
𝜕2𝑢

𝜕𝑦𝜕𝑧
𝛿 (

𝜕2𝑢

𝜕𝑦𝜕𝑧
) + 𝑀

𝜕2𝑣

𝜕𝑥𝜕𝑦
𝛿 (

𝜕2𝑣

𝜕𝑥𝜕𝑦
) + 𝑁

𝜕2𝑣

𝜕𝑥𝜕𝑧
𝛿 (

𝜕2𝑣

𝜕𝑥𝜕𝑧
) + 𝑂

𝜕2𝑣

𝜕𝑦𝜕𝑧
𝛿 (

𝜕2𝑣

𝜕𝑦𝜕𝑧
)

+ 𝑃
𝜕2𝑤

𝜕𝑥𝜕𝑦
𝛿 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) + 𝑄

𝜕2𝑤

𝜕𝑥𝜕𝑧
𝛿 (

𝜕2𝑤

𝜕𝑥𝜕𝑧
) + 𝑅

𝜕2𝑤

𝜕𝑦𝜕𝑧
𝛿 (

𝜕2𝑤

𝜕𝑦𝜕𝑧
) 

 

(4) 

Where, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽, 𝐾, 𝐿, 𝑀, 𝑁, 𝑂, 𝑃, 𝑄, 𝑅  are the non-local mesostructure material 

parameters.  Ganghoffer et al. [24] has proposed a methodology to identify these parameters with respect 

to Representative Volume Element (RVE) of woven materials. 

 

2.1.1 Principle of virtual work and equilibrium equations (2D) 
 

In this part, the development is proposed just for 2D case. For the convenience of the derivation, 

curvatures (𝜿 =  𝜅𝑖𝑗𝑘) is written as: 

 

     
𝜕2𝑢

𝜕𝑥2 =  𝑢1,𝑖𝑖
 ;   

𝜕2𝑢

𝜕𝑦2 =  𝑢1,𝑗𝑗
 ;   

𝜕2𝑣

𝜕𝑥2 =  𝑢2,𝑖𝑖
 ; 

𝜕2𝑣

𝜕𝑦2 =  𝑢2,𝑗𝑗
 ;  

𝜕2𝑢

𝜕𝑥𝜕𝑦
=  𝑢1,𝑖𝑗

  ; 
𝜕2𝑣

𝜕𝑥𝜕𝑦
=  𝑢2,𝑖𝑗

 

 

Where, i and j, with (,) denotes the order of partial differentiation. Let 𝛿𝑢𝑘  (𝑘 = 1,2) and 𝛿𝑢𝑘,𝑖𝑗
(𝑘 =

1,2) be the virtual displacements, and 𝛿𝜀𝑖𝑗  , 𝛿𝜅𝑖𝑗𝑘  be the associated virtual strains. Thus, the Internal 

Virtual Work (IVW) of 2D composite in the framework of plane stress and assumption of small strain, 

𝜀𝑖𝑗 =  
1

2
(𝑢𝑖 ,𝑗

+ 𝑢𝑗,𝑖
)  is given by (5): 

 

            𝐼𝑉𝑊 =  − ∬ 𝑆𝑖𝑗 ∙ 𝛿 {
1

2
(𝑢𝑖,𝑗

+ 𝑢𝑗,𝑖
)} 𝑑𝜔

 

𝜔→2𝐷
−  ∬ 𝜁𝑖𝑗𝑘 ∙ 𝛿 {𝑢1,𝑖𝑖

  , 𝑢1,𝑗𝑗
 , 𝑢1,𝑖𝑗

 ,
 

𝜔→2𝐷

 𝑢2,𝑖𝑖
 , 𝑢2,𝑗𝑗

 , 𝑢2,𝑖𝑗
}  𝑑𝜔 

 

(5) 

After performing integration by parts of both the terms in the above equation and  using the principle of 

virtual work (PVW) for case of static analysis, the equilibrium equations (in weak form) of the 
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homogenized nonlocal theory for analysis of compressive strength of the composite in 2D can be written 

as follows (6): 

Π = 𝐼𝑉𝑊 + 𝐸𝑉𝑊 = 0       ∀𝛿𝒖  (6) 

Where, External Virtual Work (EVW) is as follows (7): 

 

𝐸𝑉𝑊 =    − {∬ 𝐹𝑘 ∙ 𝛿𝑢𝑘  𝑑𝜔

 

𝜔

+ ∮ 𝑓𝑘 ∙ 𝛿𝑢𝑘  𝑑𝑆 +

 

𝑆

 ∑ ∬  𝑀𝑘 
∙ 𝛿𝑢𝑘,𝑖

 𝑑𝜔 +

 

𝜔

∑ ∮ 𝑚𝑘 
∙ 𝛿𝑢𝑘,𝑖

 𝑑𝑆

 

𝑆

+ ∮ 𝐶𝜏

 

𝑆

∙
𝜕𝛿𝑢𝑘

𝜕𝑛
 𝑑𝑆 + ∑ 𝑃 𝛿𝑢𝑘 } 

With 𝑘 = 1,2  and 𝛾 = 𝑖  𝑜𝑟  𝑗 

  

(7) 

Where, 𝐹𝑘 is Body/Volume force; 𝑓𝑘 is Traction/surface force; 𝑀𝑘 is Couple force on the plane/body; 

𝑚𝑘  is Couple force on the edge/surface of the plane/body; 𝐶𝜏  is Couple spread on the edge of the 

plane/body, only normal at the edge of plate and  𝑃  is contributions of concentrated load at the 

corner/edge. Consequently, the local equilibrium equations in strong form and the boundary conditions 

can be written as follows (8):  

 

Equilibrium equations (Strong Form): 

 

a) Domain(𝜔):                 

                                  𝑆𝑖𝑗,𝑗 = − 𝐹𝑘     and    𝜁𝑖𝑗𝑘,𝑗𝑖 = − ∑ 𝑀𝑘       ∀𝑝𝑜𝑖𝑛𝑡   𝑜𝑛   ∈  𝜔 

b) Boundary(S): 

                                                   − 𝑆𝑖𝑗 ∙ 𝑛𝑗 =  −  𝑓𝑘                     ∀𝑝𝑜𝑖𝑛𝑡   𝑜𝑛   ∈  𝑆 

                                                        𝜁𝑖𝑗𝑘  
∙ 𝑛𝛾 ∙ 𝑛𝛾  =    − 𝐶𝜏                ∀𝑝𝑜𝑖𝑛𝑡   𝑜𝑛   ∈  𝑆 

                                         𝜁𝑖𝑗𝑘,𝑗 
 
∙  𝑛𝛾 +  

∑ 𝜕𝜁𝑡𝑖
8
𝑖=1

𝜕𝑆   
=  − ∑ 𝑚𝑘           ∀𝑝𝑜𝑖𝑛𝑡   𝑜𝑛   ∈  𝑆 

Boundary conditions(BC) on 𝑆: 

 

Specify: 

𝑖)      𝑢𝑘       𝑜𝑟    𝑆𝑖𝑗 ∙ 𝑛𝑗    ;     𝑖𝑖)      𝑢𝑘,𝑖
    𝑜𝑟     𝜁𝑖𝑗𝑘  

∙ 𝑛𝛾 ∙ 𝑛𝛾 

  

Where, 𝑘 = 1,2  𝑎𝑛𝑑  𝛾 = 𝑖, 𝑗. 

 

(8) 

2.2 Finite element part 

2.2.1 FE formulation of Non-local model (2D) 

 
Consider Eq. 2, 

− ∫ {𝜻 ∙ 𝛿𝜿 + 𝑺 ∶ 𝛿𝑬}𝑑Ω + 〈𝑭 ∙ (𝛿𝒖 , 𝛿𝜿) 〉 = 0       ∀𝛿𝒖
 

Ω→2𝐷

 , ∀𝛿𝜿 (9) 
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By expanding and neglecting the normal and corner terms, the above equation is written as (10): 

 

− ∫ {𝑪𝒇
̿̿ ̿ 𝜿 𝛿𝜿 + 𝑫̿ 𝜺 ∶  𝛿𝜺}𝑑Ω

 

Ω→2𝐷

=    ∫ 𝒇𝑏

 

Ω→2𝐷

 𝛿𝒖𝑇𝑑Ω +  ∫ 𝒇𝑆

 

𝑆

 𝛿𝒖𝑇 𝑑𝑆 + ∫ 𝑴𝑏

 

Ω→2𝐷

 (𝛿𝒖′)𝑇𝑑Ω

+  ∫ 𝑴𝑆

 

𝑆

 (𝛿𝒖′)𝑇 𝑑𝑆      ∀𝛿𝒖 

(10) 

 

Where, 𝑫̿ is the 4th order constitutive matrix, local fiber bending stiffness matrix, 𝑪𝒇
̿̿ ̿ is a diagonal matrix 

of size (6x6), 𝑴𝑏  and 𝑴𝑆  are the ‘couple forces’ acting on the body and at the surface/edge and 

derivatives of displacement or deflection, 𝒖′ =  [
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕𝑣

𝜕𝑥
 ,

𝜕𝑣

𝜕𝑦
 ,

𝜕2𝑣

𝜕𝑥𝜕𝑦
  ]

𝑻

. 

 

Let 𝒅(𝑒)  be the DOF vector of the element and 𝑵, the shape function vector for displacement then:    

 
𝒖 ≅ 𝑵 𝒅(𝑒) ;     𝒖′ ≅ 𝑵′ 𝒅(𝑒) ; 

 

𝜺 ≅ 𝑩 𝒅(𝑒) ;    𝑩 = 𝐵𝑖𝑗 = [𝑫] 𝑵 ;   𝜿 ≅  𝑩′ 𝒅(𝑒)   

 

(11) 

Where, [𝑫] is a derivative operator. Now substituting above approximations in (9) and performing 

some mathematical steps, we get system of equations as follows: 

 

− ∫ {𝑪𝒇
̿̿ ̿ 𝑩′ (𝑩′)𝑇  + 𝑫̿ 𝑩  𝑩𝑇}  𝒅(𝑒)   𝑑Ω

 

Ω→2𝐷

=  ∫ 𝒇𝑏

 

Ω→2𝐷

 𝛿𝑵𝑇  𝑑Ω + ∫ 𝒇𝑆

 

𝑆

 𝛿𝑵𝑇  𝑑𝑆 + ∫ 𝑴𝑏

 

Ω→2𝐷

 (𝛿𝑵′)𝑇 𝑑Ω

+  ∫ 𝑴𝑆

 

𝑆

  (𝛿𝑵′)𝑇 𝑑𝑆     

 

Or, Let 𝑩1= 𝑩 and 𝑩2= 𝑩′ 

Let,    𝑲𝒃 = ∫ {𝑪𝒇
̿̿ ̿ (𝑩2)𝑇 𝑩2  }  𝑑Ω    

 

Ω→2𝐷

 

                 𝑲𝑵 = ∫ {{𝑫̿ 𝑩1
𝑇

 𝑩1   } 𝑡  }   𝑑Ω    
 

Ω→2𝐷

 

 

(𝑲𝒃 + 𝑲𝑵)(𝒆)  𝒅(𝑒) = 𝒇(𝑒) 

Or, 

⟹ 𝑲(𝑒)  𝒅(𝑒) = 𝒇(𝑒) 

 

        𝐾𝒊𝒋
(𝒆)

 𝑑𝒊
(𝒆) =   𝑓𝒊

(𝒆) 

(12) 

 

Where, 𝑲𝑏 is the fiber bending stiffness and 𝑲𝑁  is the normal/ in-plane stiffness and 𝑡 is the thickness 

of the 2D composite plate. 𝑩1 and 𝑩2 are the normal and higher order (bending) strain displacement 

matrix. The above system of equations is implemented in UEL subroutine (written in FORTRAN 77), 

thereby developing a new 𝐶1 continuous non-local element (NL U32) to simulate compressive strength 

of 2D UD ply and complex composites (carbon/epoxy long fiber) using ABAQUS ©. The numerical 

integration is performed by using (4x4) Gauss quadrature rule. 
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2.2.2 Formulation of Non-local element (NL U32) 

 

The Lagrange elements (available in ABAQUS ©) are 𝐶0 type continuous elements. The solution field 

variable (for ex: displacement,𝑈), which is being approximated in Lagrange type of elements are only 

continuous between element, but not their derivatives. In order to solve the formulation of microbuckling 

problem using FEM accurately, it is must to have a 𝐶1 type continuous element (Hermit type), where 

the solution of field variables and its derivatives are necessary. Or, in other words using Hermit type 

elements, the continuity between the elements is not only with the solution of field variable, but also 

with their derivatives (gradients), so that the microbuckling phenomenon (non-local phenomenon) can 

be captured well at mesoscopic level. 

 

It is important to note that, the strain gradient quantities are the second order spatial derivatives of 

displacement. If we use a reference element, it is necessary to link the first and second order derivatives 

between two coordinate systems (global and local). Consequently, interpolation of geometry should 

permit to establish this link (Jacobi for first and second derivate). 

 

Therefore, a new element (NL U32) is formulated, similar to Bogner-Fox-Schmit rectangle [21] as 

shown in Fig.4, where the degrees of freedom (D.O.F) of the element is not only the displacements, but 

also their derivatives. BFSR type element is normally used for buckling analysis of plates. See for 

instance [22-23]. 

 

Figure 4: Non-Local Super-parametric Element (NL U32) 

 

 Interpolation functions: 

(a) Displacement: Complete 3rd order cubic polynomial is chosen. 

 
            𝑼(𝒙, 𝒚)) ≅ 𝒖𝒉(𝒙, 𝒚) = 𝒗𝒉(𝒙, 𝒚) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑦 + 𝑐4𝑥2 + 𝑐5𝑥𝑦 + +𝑐6𝑦2 + 𝑐7𝑥3 + 𝑐8𝑥2𝑦

+ 𝑐9𝑥𝑦2 + 𝑐10𝑦3 + 𝑐11𝑥3𝑦 + 𝑐12𝑥2𝑦2 + 𝑐13𝑥𝑦3 + 𝑐14𝑥3𝑦2 + 𝑐15𝑥2𝑦3

+ 𝑐16𝑥3𝑦3 
   

(13) 

 

              

 

 

 

 

 

𝒖ℎ(𝜉, 𝜂) ≅ ∑ 𝑁𝑖
(𝑒) (

16

𝑖=1

𝜉, 𝜂) 𝒖̅𝑖  

    

𝒗ℎ(𝜉, 𝜂) ≅ ∑ 𝑁𝑖
(𝑒) (

16

𝑖=1

𝜉, 𝜂) 𝒗̅𝑖  

    

Where,  
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- 1D cubic  Hermit type polynomials are used:  

 

 
 

 

 

 

 

The above 1D polynomials permits to build displacement interpolation functions as follows(14): 

 

            𝑁𝑗 =  [  𝐻0𝑖(𝜉)  𝐻0𝑖(𝜂)  ;   𝐻1𝑖(𝜉)  𝐻0𝑖(𝜂)  ;  𝐻0𝑖(𝜉)  𝐻1𝑖(𝜂)  ;  𝐻1𝑖(𝜉)  𝐻1𝑖(𝜂) ] 
 
                          𝑤ℎ𝑒𝑟𝑒, 𝑗 = 1, … .16 𝑎𝑛𝑑 𝑖 = 0,1,2 

   

(14) 

The obtained shape functions corresponds to 32 D.O.F of the element. For detailed formulation 

of shape functions refer for instance [21]. 

 

(b) Geometry: Complete 2nd order biquadratic polynomial is chosen in order to calculate the 

second derivatives in Jacobi as discussed earlier. 

 
 

 

 

 

 
 

Abaqus UEL workflow: 

 

UEL (User Elements) subroutine is a programming interface provided with ABAQUS ©/Standard using 

which one can define customized finite elements. It is very important to understand the overall operation 

of the ‘UEL’ block. Fig. 5 shows a schematic describing the ‘input’ and ‘output’ flow from the UEL 

subroutine, that is called for every element. For a current time increment, ABAQUS © provides the 

incremental and final nodal point displacements. State variables (stress/strain) at the start of that time 

increment are also provided. UEL is then required to return the updated element stiffness matrix 

(AMATRX), internal force (RHS) and state variables all at the end of the current time step [25]. 

 

 

Figure 5: I/O block diagram for UEL subroutine 

 

The UEL is built under an incremental form, this makes us easier to integrate non-linear behavior laws 

in future. User Material subroutines: ‘UMAT’ and ‘URMAT’ should be introduced in order to calculate 

the tangent behavior of 2D classical stiffness (UMAT) and non-local stiffness (URMAT).  

𝑥 ≅ ∑ 𝑁𝑗
(𝑒)(

9

𝑗=1

𝜉, 𝜂)𝑥𝑖            

 𝑦 ≅ ∑ 𝑁𝑗
(𝑒)(

9

𝑗=1

𝜉, 𝜂)𝑦𝑖  

 

 𝐻01(𝜉) = 1 − 3 (
𝜉 + 1

2
)

2

+ 2 (
𝜉 + 1

2
)

3

 

 𝐻02(𝜉) = 3 (
𝜉 + 1

2
)

2

− 2 (
𝜉 + 1

2
)

3

 

𝐻11(𝜉) = (
𝜉 + 1

2
) − 2 (

𝜉 + 1

2
)

2

+ (
𝜉 + 1

2
)

3

 

 𝐻12(𝜉) = (
𝜉 + 1

2
)

3

− (
𝜉 + 1

2
)

2

 

 𝐻01(𝜂) = 1 − 3 (
𝜂 + 1

2
)

2

+ 2 (
𝜂 + 1

2
)

3

 

 𝐻02(𝜂) = 3 (
𝜂 + 1

2
)

2

− 2 (
𝜂 + 1

2
)

3

 

𝐻11(𝜂) = (
𝜂 + 1

2
) − 2 (

𝜂 + 1

2
)

2

+ (
𝜂 + 1

2
)

3

 

 𝐻12(𝜂) = (
𝜂 + 1

2
)

3

− (
𝜂 + 1

2
)

2
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3 Results 

3.1 Validation of NL U32 element 
 

In order to compare the accuracy and validate Non-Local element (NL U32) for linear elastic isotropic 

case, results are compared with ABAQUS © linear plane stress element (CPS4), as it is much more 

convenient reference element at the moment, since it is also built with plane stress formulation. The 

values of 𝑪𝒇
̿̿ ̿  parameters (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹) is unknown for NL U32 element. Therefore, it is important to 

understand the influence of these parameters on the solution. Hence, 𝑪𝒇
̿̿ ̿  parameters value are varied and 

kept constant in all the cases. Results of only few relevant test cases are presented here. 

 

It should be noted that for all the cases, same material properties has been defined for CPS4 element: 

Elastic Young’s modulus, 𝐸 = 2.0𝐸5 𝑀𝑃𝑎, Poisson’s ratio, 𝜈 = 0.3 and thickness, 𝑡 = 1𝑚𝑚. For NL 

U32 element, material properties are: Matrix Young’s modulus, 𝐸𝑚 = 2.0𝐸5 𝑀𝑃𝑎 , Poisson’s 

ratio, 𝜈𝑚 = 0.3, thickness, 𝑡 = 1𝑚𝑚, the values for  parameters of local fiber bending stiffness matrix  

𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹: started with initial guess of low value, 0.15 𝑀𝑃𝑎 ∙ 𝑚𝑚2 and varied with the order of 

100. Analysis is performed on a rectangular plate (100 x 50 mm), meshed with 276 Elements (312 nodes). 

 

Case1: Compression 

 

 

 
 

 

 

 

 

 
Figure 7: Influence of  Cf  Parameters 

Figure 6: Mesh, Load and Boundary conditions 
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Case2: Bending 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9: Mesh, Load, and Boundary Conditions 

Figure 10: Influence of  Cf  Parameters 

Figure 8: Comparison of Displacements (u,v) at node 222 for different  Cf  parameters value 
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From both the cases: compression (Fig. 7) and bending (Fig. 10), it can be observed that, similar response 

and difference in solution is very less compared to ABAQUS © CPS4 element when local fiber bending 

stiffness matrix, 𝑪𝒇
̿̿ ̿  parameters (ABCDEF) varied up to 1500 𝑀𝑃𝑎 ∙ 𝑚𝑚2. But, significant difference 

in solution is observed compared to CPS4 element when ABCDEF value is increased above 1500 𝑀𝑃𝑎 ∙

𝑚𝑚2  (see Fig. 8 and Fig. 11). Much stiffer response can be observed with NL U32 compared to 

continuum solid CPS4. This is because, for lower order of  𝑪𝒇
̿̿ ̿ (≤ 103), the order of bending energy 

(𝜿𝑇𝑪𝒇
̿̿ ̿ 𝜿) becomes lower compared to classical strain energy (𝜺𝑇 𝑫̿ 𝜺), since the order of curvatures is 

also lower. Consequently, bending energy has negligible contribution to the total energy. So, we tend to 

obtain similar solution as classical plane stress solution. But, for higher order of  𝑪𝒇
̿̿ ̿ (> 103), the order 

of bending energy becomes similar or higher compared to the classical strain energy. Consequently, we 

can observe significant difference in solution for ABCDEF >1500 𝑀𝑃𝑎 ∙ 𝑚𝑚2. The level of stiffness 

which generates an effect, can be estimated (but not shown here), and we have also obtained the value 

of 1500 𝑀𝑃𝑎 ∙ 𝑚𝑚2. In conclusion, in order to have non-local effects in this particular solution, it is 

necessary to have 𝑪𝒇
̿̿ ̿ parameters value > 103. This clearly explains the influence of 𝑪𝒇

̿̿ ̿ parameters value 

in the solution. In future, it is necessary to obtain proper values for ABCDEF in correspondence to a 

composite mesostructure. It is also important to note that, the choice of interpolation functions, 

integration rule for both ABAQUS © CPS4 and NL U32 element are different, which can also cause 

difference in solution, especially near the points of loading. However, the global response obtained with 

NL U32 is almost similar compared to ABAQUS © CPS4 element, which validates the non-local 

element for linear isotropic elastic case.  

 

Mesh Convergence study: 

 

In order to understand the convergence of the solution obtained with NL U32 element against mesh size, 

various mesh size of:  𝑛𝑜. 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑛 = 8, 32, 66, 128, 276, 512 is chosen. The material properties, 

loading and boundary conditions is same as previous (case 2), except that the two values of  ABCDEF 

is chosen: 15 𝑀𝑃𝑎 ∙ 𝑚𝑚2 and 1500000 𝑀𝑃𝑎 ∙ 𝑚𝑚2 . The solution is compared with ABAQUS © CPS4 

element. We can observe from Fig. 12, that as the mesh size (n) is increased, we tend to obtain an 

asymptotic or converged solution for both NL U32 element and ABAQUS © CPS4 element. As 

discussed earlier, for lower values of ABCDEF with increase in mesh size, we tend to obtain similar 

solution as classical plane stress element CPS4, and for higher values of ABCDEF, quite significant 

difference can be observed. However, the convergence is obtained with increase in mesh size. This 

confirms that for finer mesh, we will obtain a good converged solution with NL U32 element. 

Figure 11: Comparison of Displacements (u,v) at node 222 for different Cf  parameters value 
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Figure 12: Mesh Convergence study of NL U32 element 

 

3.2 Comparison with 2D heterogeneous complete microstructure 

3.2.1 Methodology  

 

As a final step of validation of  Non-Local Homogeneous model implemented in non-local element (NL 

U32) for linear elastic case, results are compared with 2D Unidirectional (UD) composite (T300/914 

Carbon/epoxy) model built using Abaqus plane stress element (CPS4). The stacking sequence of UD 

heterogeneous composite (with 10 layers) model built in Abaqus is as shown in (Fig. 13): 

 

 

 

 

 

 

 

 

 

 

 

 

The elastic properties of T300/914 Carbon/epoxy UD ply obtained from [18] as in Table. 1 is assigned 

for both matrix and fiber in heterogeneous model of Abaqus and homogenous non-local model. Note 

that the matrix and fiber is assumed isotropic in both the models. 

 

 

 

 

 

 

Figure 13: 2D composite stacking sequence: UD plies at 00 
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Table 1: Material properties of UD ply [18] 

Heterogeneous model Abaqus (CPS4) Homogenous Non-local model (NL U32) 

matrix fiber matrix fiber 

𝐸𝑚 = 4500 𝑀𝑝𝑎 𝐸𝑓 = 24000 𝑀𝑝𝑎 𝐸𝑚 = 4500 𝑀𝑝𝑎 𝐸𝑓 = 24000 𝑀𝑝𝑎 

         𝜈𝑚 = 0.4      𝜈𝑓 = 0.3          𝜈𝑚 = 0.4 𝜈𝑓 = 0.3 

thickness, 𝑡 = 1𝑚𝑚 Volume fraction, 𝑓 = 0.625 

Diameter of fibers, 𝑑𝑓 = 0.01𝑚𝑚 

Local fiber bending 

stiffness parameter for 

UD ply, 𝐷 = 𝑓𝐸𝑓𝑟𝑔𝑓
2 =

0.09375 𝑀𝑃𝑎 ∙ 𝑚𝑚2  

𝑓𝑖𝑏𝑒𝑟 𝑔𝑦𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑑𝑖𝑢𝑠,   

𝑟𝑔𝑓 =  √
𝐼

𝑆𝑓
 

 

ABCEF = 0.001*D thickness, 𝑡 = 1𝑚𝑚 

It is important to note that, for UD ply, since there is just one gradient (𝑣′′ =
𝜕2𝑣

𝜕𝑥2) along thickness 

direction, as in case of [2], just one parameter (D) of local bending stiffness matrix,  𝑪𝒇
̿̿ ̿  is considered, 

values for other parameters (ABCEF) is assigned very low compared to parameter D in homogenous 

non-local model.  

 

3.2.2 Results 
 

From Fig. 14 and Fig. 15, it is clear that the results (displacements: 𝑢, 𝑣) obtained from homogenous 

non-local model is in close comparison with the results of heterogeneous model of ABAQUS © for the 

case of UD composite subjected to bending. The slight difference between two solutions are clearly due 

to the addition of non-local terms and choice of interpolation functions (for displacement and geometry) 

in homogenous non-local model. With this validation, it can be concluded that the homogenized non-

local model (implemented in NL U32 element) can be used for analysis of UD composites (linear 

isotropic elastic cases). 

 

 

Figure 14: comparison of variation of displacement (u) over nodes 
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Figure 15: comparison of variation of displacement (v) over nodes 

 

4 Conclusion 

 

A homogenized non-local finite element model has been proposed, similar to Mindlin’ second gradient 

theory [1] and the first numerical developments have been initiated. The framework of this nonlocal 

modeling is more general that of [2] to assess microbuckling phenomenon in UD and complex 

composites (carbon/epoxy long fiber) at the structural/mesoscopic scale. The developed non-local 

numerical model is implemented in User Element (UEL) subroutine for analysis in ABAQUS ©, thereby 

developing a 2D, 𝐶1 continuous non-local super-parametric element (NL U32) for linear isotropic 

elastic case. Various tests results are presented to validate the capability of NL U32 element in 

comparison with ABAQUS © iso-parametric plane stress element (CPS4) and also to understand the 

influence of 𝑪𝒇
̿̿ ̿ parameters. In addition, as a final check for validation, the non-local homogenous 2D 

model implemented in NL U32 is compared with complete 2D UD heterogeneous composite structure, 

modeled using ABAQUS © CPS4 element. From all the test cases, good results are obtained in 

comparison with the ABAQUS © iso-parametric element, thereby validating the capability of non-local 

element (NL U32). 

 

However, since no non-linear effects (material and geometrical) are included in NL U32 element, it is 

not possible to assess the actual microbuckling phenomenon in UD and woven composites at the 

moment, the values of  𝑪𝒇
̿̿ ̿ parameters are also unknown. Hence, in future it is planned to implement 

non-linear effects in the model, consequently in NL U32 element for 2D case. Along with obtaining the 

optimized  𝑪𝒇
̿̿ ̿ parameters values by comparing simulations between complete microstructure and non-

local simulations and finally extension to develop 3D non-local element to assess 3D woven composites.   
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