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Abstract

In r-adaptivity, several methods are available to extend boundary motion analytically into the com-
putational domain. We propose a new mesh deformation technique based on transfinite mean value
interpolation (TMI). In its original version TMI is explicit, matrix-free, and linearly exact, i.e., a solid
rotation of the whole mesh is accurate. The mesh updating efficiency and robustness of the TMI, inverse
distance weighting method (IDW) and radial basis functions method (RBF) are compared.

Résumé

Plusieurs méthodes sont présentement utilisées pour ’extension analytique du déplacement des noeuds
de la frontiére aux noeuds a l’intérieur du domaine. Nous proposons 1’étude d’une nouvelle méthode
d’interpolation nommée "Transfinite Mean value Interpolation” (TMI), qui posséde deux principaux
avantages sur certaines méthodes actuellement utilisées. Premiérement, elle est linéairement exacte,
ainsi la rotation solide du maillage est calculée exactement sans dégradation du maillage initial. En-
suite, cette méthode est explicite et ne nécessite pas la résolution d’un systéme linéaire. Nous avons
comparé cette nouvelle méthode i la méthode de distance inverse pondérée (IDW') et a la méthode des
bases radiales (RBF'), deux autres méthodes algébriques populaires.

Keyword : moving mesh methods, radial basis functions, inverse distance
weighting method, mesh quality, transfinite mean value interpolation

1 Introduction

Fluid-structure interaction (FSI) problems are numerous in nature and engineering. For example the
flow of blood in the arteries, the beating of the wing of the birds, and the rolling motion of the Wright
Brothers Flyer obtained through wing-warping. In fluid mechanics, the Arbitrary Lagrangian-Eulerian
(ALE)[4] formulation of the Navier-Stokes equations is unquestionably the most used to describe these
problems. The Navier-Stokes equations and the elasticity equations are solved together to predict the
forces on the solid and the dynamic of the flow. The domain of application often dictates the level of
interoperability between the different solvers involved in the simulation. For example, modelling the
interaction between a submerged buoy and the flow of water requires monolithic calculation [4] [5] of
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the fluid’s degrees of freedom, the solid’s distortions, and the displacements of the mesh’s nodes to
ensure the calculations stability and convergence. Another similar application involves modelling the
interaction of submerged pipelines [9] from the well to the offshore platform. The usual weakly coupled
approach, in which the fluid’s degrees of freedom and the structure are solved sequentially, can not solve
this type of problem [15]. All ALE formulations have either an algebraic or a partial differential set of
equations to update the mesh to the motion of the solid. In these formulations, the convective acceleration
of the flow is a function of the fluid and the mesh velocities. While the pseudo-solid method is certainly
the most prevalent and has been successfully applied to monolithic and weakly coupled simulations of
fluid-structure interaction problems, algebraic methods are easier to implement and are widely used in
aeroelasticity or when the fluid-structure interaction problem can be solved sequentially.

1.1 Contribution of this study

The object of this paper is the study and characterization of mesh adaptation (r-adaptivity) with transfinite
mean value interpolation (TMI). In mesh updating, the TMI method is new and possesses intrinsic
properties which, at first glance, make it interesting for FSI simulations, i.e. it is linearly exact and
matrix-free. Therefore, it is our goal to reveal its strengths and weaknesses for FSI mesh-updating
through direct comparison with the inverse distance weighting method (IDW) and radial basis functions
(RBF) method.

2 Methods

In this section, we briefly recall the mathematics of the interpolation methods used in mesh-updating.
For a detailed description of TMI, RBF and IDW, we refer the reader to Garon and Delfour [6], Rendall
and Allen [10] and Witteveen and Bilj [14], respectively.

21 TMI

The TMI method of Dyken and Floater [3] interpolates a function f(£), defined on OS2 of Q2 at every

point x € 2\ 9. We name u(x) the result of the interpolation in

f(€)(€ —x) - ndl’
k
u(x) = o0 ||x =& )

N / (€ —x) - ndl'
o0 Ix—¢lf

where £ € 0€). In this relationship, the parameter k£ controls the behaviour of the interpolation in the

neighbourhood of 02, When k = n + 1, with n the space dimension, the TMI method is linearly
accurate.

2.2 RBF

RBF or kriging uses radial basis function to interpolate a function known on a discrete finite number of
nodes £ = {{1,&2, ...,&m }, that is to say the values of f(§;). In this method, the solution of the linear
system :

p(llé =&l w6 = Emll) At f&1)
e | = 2)
e(l&m —&ll) - @((l&m — &ml]) m xm Am f(&m)
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yields the interpolation method coefficients {1, ...\, } of u(x)

m

u(x) = > Aje(|lx = &l)) 3)

j=1

Among the functions proposed by Wendland [12], we study five, which according to De Boer et al. [2]
are the most suitable for mesh-updating. Note that we have deliberately omitted the linear constraint on
the solution to the interpolation coeflicients as it is one of the current instantiations.

23 IDW

The IDW method of Shepard [11] interpolates a function known on a discrete finite number of nodes
E ={&,&,...,&n}, that is to say the values of f(&;). We name u(x) the result of the interpolation in

Z HX—&H’“

u(@) = S )

Z HX*&H’“

where £ € 0f). The parameter k controls the behaviour of the interpolation in the neighbourhood of F.

2.4 Mesh quality

To measure the efficiency of interpolation methods in mesh-updating, we use the mesh quality metric
proposed by Knupp [8] and previously used by De Boer et al. [2] :

fss = fshape X fsize (5)

where f;,. measures the surface ratio of an element between the deformed and underformed state;
fsize = 0 when the element is either entangled or degenerated, and fs.. = 1 when the surface is
conserved. fspqpe measures how close the element is to an equilateral triangle; fspqpe = 0 when the
element is degenerated, and f,.. = 1 when the element is a perfect equilateral triangle. However, to
compare the TMI, IDW and RBF methods on an equal basis, it is preferable to normalize the quality
measurements by their respective asymptotic value. We measure ( fss)oo by updating the vertices with
a large numbers of steps, and then compute each step with a high order integration method, namely 4th
order Runge-Kutta (RK4). Thus, we define :

min( fss)

i fos)ou ©

min(fss)rel =

2.5 Mesh-updating

To integrate the mesh vertices along their path from the undeformed state to the deformed state, we study
the cost and efficiency of Euler and RK4 methods. We use the metric defined by Equation (6) to measure
the quality of the updated meshes.

We validated the results with three meshes with an increasing number of vertices. The results for TMI,
IDW and RBF methods with regards to the integration method are globally independent of the mesh
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density. Figure 1b is an example of the coarser mesh used in this study, while Table 1a shows the
behavior of the RBF mesh-updating with CPC2 and TPS functions (see Table 2).

For a known integration method, the computational cost is proportional to the number of calls to the
interpolation method, i.e., the workload. For example, for a workload of eight, we call the Euler inte-
gration method eight times per step and the RK4 twice per step. At equal workload, the computation
times of Euler and RK4 integration methods are almost identical as shown in Table 1b. Of course, a
finer mesh requires more computational time, but at equal workload it is approximatively the same for
Euler and RK4 methods. As one can see in Table 1a, the asymptotic value is reached at a faster rate with
the RK4 integration than with Euler integration. Henceforth, we will use only RK4 integration for the

numerical tests.

Table 1: Relative mesh quality for Test case 1 using RBF method and the coarser mesh.

(a) Relative mesh quality depending on the workload  (b) Time [sec] to compute each test from table 1a

Euler RK4 Euler RK4
Workload | CPC2 | TPS | CPC2 | TPS Workload | CPC2 \ TPS | CPC2 | TPS
1 0.000 0.000 - - 1 <1 <1 - -
2 0.228 0.266 - - 2 <1 <1 - -
4 0.683 0.698 | 0.724 0.776 4 <1 <1 <1 <1
8 0.854 0.863 | 0.945 0.959 8 <1 <1 <1 <1
12 0.904 0910 | 0976 0.982 12 <1 <1 <1 <1
16 0.929 0.933 | 0.987 0.990 16 <1 <1 <1 <1
32 0.965 0.967 | 0.997 0.998 32 1 <1 1 <1
64 0.983 0.984 | 0.999 0.999 64 2 1 2 1
128 0.991 0.992 | 1.000 1.000 128 3 2 3 2
256 0.996 0.996 | 1.000 1.000 256 7 3 7 3
512 0.998 0.998 | 1.000 1.000 512 13 7 14 7

3 Numerical tests

3.1 Test case 1: A rotating ellipse

In this first test, we study mesh-updating of an ellipse rotated 120 degrees anti-clockwise about its center.
The following equations give the solid rotation of the mesh vertices on the ellipse:

Tnew = T cos(f) — ysin(0)

Ynew = Y cos(f) + x sin(6)

We selected this test case because of its relevance to some large deformations FSI problems (see Wey-
mouth [13]). Also, the geometry of this test is sufficiently smooth to allow the vertices to move freely on
its boundary. We investigate this type of motion in section 3.3. Figure 1a illustrates the general geometry
of the test, while Figures 1b, 1c and 1d illustrate the meshes used for the tests.

Results

As mentioned in section 2, a parameter value k or a weighting function modify the behavior of the
interpolation method. Tables 3, 4 and 5 show the results with three values of the exponent k of the
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(a) General description. (b) Initial Mesh - Coarse - 284 nodes.

(c) Initial Mesh - Normal - 678 nodes. (d) Initial Mesh - Fine - 2240 nodes.

Figure 1: Description and initial meshes of Test Case 1.

distance function involved in the computation of the TMI and IDW methods. These tables also include
the results of three of the five RBF radial functions. For comparison purposes only, bold values indicate
when the normalized quality is within the interval [0.998,1.002]. Also, 0.000 means that the mesh
contains at least one entangled element. Both TMI and IDW produce invalid meshes for the coarser and
normal mesh. Figure 2a shows an IDW updated mesh where entangled elements are localized along the
ellipse boundary. These tests indicate that k = 4 and k = 5 are the optimal parameter value for the TMI
and IDW methods, respectively. However, all RBF radial functions yield good quality meshes at a lower
cost than TMI and IDW methods.

Figures 2b, 2¢ and 2d show examples of updated meshes. The coarser mesh was chosen to illustrate the
behavior of each interpolation method. We observe that the IDW and TMI methods update the nodes in
aneighborhood surrounding the moving boundary; an increase of the value of the exponent increases the
size of the region of influence. Figures 4b, 4c and 4d show that this gain is marginal for values greater
than or equal to £ = 5. On the other hand, RBF mesh updating moves vertices farther and distributes
them more evenly. All RBF functions yields similar meshes.
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(a) Example of degenerated mesh. (b) Final mesh.
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(c) Final mesh. (d) Final mesh.
Identifier ~Mesh  Method Parameter Workload
(a) Coarse  IDW k=3 4
(b) Coarse T™MI k=4 256
(©) Coarse  IDW k=4 256
(d) Coarse RBF TPS 256

Figure 2: Final meshes for multiple subtests of Test case 1.

3.2 Test case 2: Channel flow with a wall-mounted flexible body

Another classical FSI benchmark problem is the simulation of a flexible beam in a channel. We used
the geometry inspired from Fortin et al. [7] illustrated in Figure 3a. However, we used the kinematic
proposed by Barral [1] and described by Equations (7) and (8):

Tnew = x(0)+ (R —x(0))(1— cos()) 7
Ynew = (R - ac(O)) sin(&) ()
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Table 2: List of radial basis functions investigated.

Name Formula
1| CPC2 (1—2)*(4r +1)
2 | CTPSC1 | 1+ (80/3)z% — 4022 + 152% — (8/3)2° + 202% In(x)
3 | CTPSC2A | 1 — 3022 — 1023 + 452* — 62° — 6023 In(x)
4 | CTPSC2B | 1 — 2022 + 8023 — 452* — 162° + 602* In(x)
5| TPS 2? In(z)
Table 3: Relative mesh quality from Test case 1 for the coarser mesh.
T™I IDW RBF
Workload | 3 | 4 | 5 3 | 4 | 5 |CPC2]|CTPSCI | TPS
4 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.259 0.724  0.776
16 0.000 0.840 0.000 | 0.000 0.000 0.000 | 1.012 0.987  0.990
64 0.000 0.990 0.000 | 0.000 0.000 0.000 | 1.001 0.999  0.999
256 0.000 1.000 0.000 | 0.000 0.000 0.000 | 1.000 1.000 1.000
512 0.000 1.000 0.000 | 0.000 0.000 0.000 | 1.000 1.000  1.000
Table 4: Relative mesh quality from Test case 1 for the normal mesh.
T™I IDW RBF
Workload | 3 [ 4 | 5 3 | 4 | 5 |CPC2|CTPSCI | TPS
4 0.000 0.049 0.000 | 0.000 0.000 0.000 | 0.713 0.862  0.909
16 0.000 0.837 0.547 | 0.000 0.000 0.008 | 0.997 1.000 1.002
64 0.000 0.990 0.969 | 0.000 0.000 0.893 | 1.000 1.000  1.000
256 0.000 1.000 0.998 | 0.000 0.000 0.995 | 1.000 1.000 1.000
512 0.000 1.000 1.000 | 0.000 0.000 1.000 | 1.000 1.000 1.000
Table 5: Relative mesh quality from Test case 1 for the finer mesh.
TMI IDW RBF
Workload | 3 | 4 | 5 3 | 4 | 5 |CPC2]|CTPSCL | TPS
4 0.000 0.310 0.000 | 0.000 0.000 0.000 | 0.564 1.056 1.028
16 0.949 0976 0.967 | 0.646 0.933 0.946 | 0.987 1.000  1.002
64 0991 0.999 0.998 | 0.977 0.996 0.997 | 1.000 1.000 1.000
256 1.000 1.000 1.000 | 0.999 1.000 1.000 | 1.000 1.000 1.000
512 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
with
z(0) e it —e 7k
0=—= R= Rmzn Rmaz - Rmzn -1 <
R’ + ) 1—e "

where p is a shape parameter, that is 4 = 0 corresponds to the initial state and ¢+ = 1 corresponds to the
final state. The parameters for this problem are «
given in Tables 6, 7 and 8.

Results

10, Rmm =

3, Rinaz = 400. The results are

In this test case, we observed fewer entangled elements than with test Case 1. Mesh-updating performed
well with the three interpolation methods except for the TMI and the IDW methods for £ = 3, where we
observed entangled elements in the vicinity of the flexible beam (see Figure 4a). For the TMI method,
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(a) General description of the second Test Case 2.

(c) Initial Mesh - Normal - 483 nodes. (d) Initial Mesh - Fine - 1802 nodes.

Figure 3: Description and initial meshes of Test Case 2.

Figures 4a, 4b and 4c show the influence of the parameter £ on the concentration of vertices near the
beam. An increase in the value of the parameter moves this region farther.

The IDW method produces fewer invalid meshes than for the previous test, with only one exponent value
producing invalid meshes — see Figure 4d for an example of a valid mesh. Once again, all RBF functions
yield good quality meshes and Figures 4e and 4f show the final updated mesh for the CPC2 and TPS

radial functions.

The convergence rate for this test case is better than for test case 1 for the IDW and RBF methods, but

not for TMI method which requires a significant number of steps.

3.3 Test case 3: A rotating ellipse (by deformation)

In this test case, we replace the rotating motion by an equivalent deformation that allows the boundary
vertices to move freely on the ellipse boundary. This technique allows complete rotation without signif-
icant mesh distortion. We propose a new way to simulate solid rotation. The object is instead deformed
from initial to final state. The motion is now given by the following equations:

0 = tan™! (% tan(f — ﬁ))

r= \/@2 cos(f) + b2 sin(h)

Tpew = T c0s(0)

Ynew = 7 sin(0)

with a the minor axis of the ellipse, b the major axis, § = tan(%) and f3 the rotation angle. The results

are presented in Tables 9, 10 and 11.

Results

In this last test, we replaced solid rotation with an equivalent deformation. This transformation reduces
the nodes motion considerably and therefore minimizes the computational workload. The interpolation-
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(e) Final mesh. (f) Final mesh.
Identifier =~ Mesh  Method Parameter Workload
(a) Normal T™MI k=3 256
(b) Normal ™I k=4 256
(©) Normal T™MI k=5 256
(d) Normal IDW k=5 256
(e) Normal RBF CpC2 256
® Normal  RBF TPS 256

Figure 4: Final meshes for multiple subtest of test case 2.

based r-adaptivity performed well except for the RBF method for compact radial bases CPC2 and CTPSCI1.
This result is unexpected and needs to be confirmed.

With this shape transformation, the vertices move freely on the ellipse. However, this motion is only
apparent since the methodology interpolates the vertices coordinates linearly between the initial position
and the final position. This transformation makes it possible to better preserve the characteristics of the
initial mesh, such as the shape and size of the elements. Figures 5b, Sc and 5d show the final updated
meshes, for the TMI, IDW and RBF methods, among which we found no significant differences.

4 Conclusion

We investigated and characterized interpolation-based mesh updating with transfinite mean value inter-
polation (TMI), inverse distance weighting (IDW) and radial basis functions (RBF).
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Table 6: Relative mesh quality from Test case 2 for the coarser mesh.

T™I IDW RBF
Workload | 3 | 4 [ 5 3 | 4 | 5 |CPC2]|CTPSCI | TPS
4 0.000 0463 1.167 | 0442 1.182 1.316 | 1.017 0954 0945
16 0.000 0953 1.021 | 0.907 1.026 1.068 | 1.001 0.994  0.993
64 0.000 0.996 1.001 | 0.992 1.002 1.003 | 1.000 1.000 1.000
256 0.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000
512 0.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000

Table 7: Relative mesh quality from Test case 2 for the normal mesh.

T™MI IDW RBF
Workload | 3 | 4 | 5 3 [ 4 [ 5 |CPC2][CTPSCI | TPS
4 0.000 0.000 0.085 | 0.000 0.375 1.015 | 0.835 1.046 1.050
16 0.000 0.224 0.802 | 0.000 0.899 1.032 | 0.975 1.008 1.010
64 0.000 0.920 0.984 | 0.000 0.992 1.001 | 0.998 1.001 1.001
256 0.000 0.996 0.999 | 0.000 1.000 1.000 | 1.000 1.000  1.000
512 0.000 1.000 1.000 | 0.000 1.000 1.000 | 1.000 1.000 1.000

Table 8: Relative mesh quality from Test case 2 for the finer mesh.

TMI IDW RBF
Workload | 3 | 4 [ 5 3 | 4 | 5 |CPC2]|CTPSCI | TPS
4 0.000 0.742 0.889 | 0.603 0910 1.247 | 0.894 1.000 1.006
16 0.000 0954 0.975 | 0.908 0986 1.041 | 0.984 1.001 1.002
64 0.000 0.996 0.998 | 0.992 0.999 1.002 | 0.999 1.000  1.000
256 0.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000
512 0.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000

1. In the first test case RBF outperformed the two algebraic methods in robustness and rate of con-
vergence. On the other hand, the TMI and IDW methods yielded good quality meshes for the
finest mesh (Figure 1d) with optimal exponent £ = 4 and k = 5, respectively.

2. In the second test case, RBF outperformed the TMI and IDW methods. Nevertheless, the TMI
and IDW methods yielded good quality meshes for the coarser, normal, and finest meshes with
optimal exponent k£ = 5 and k = 5, respectively (Figures 3c-3d).

3. In the third test case, we allowed the vertices to move freely on the boundary of an ellipse under
rotation. The TMI and the IDW were more robust than the RBF mesh-updating with parameters
values between 3 and 5, inclusively, yielding similar rates of convergence. However, compact
support radial functions yielded entangled meshes.
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Table 9: Relative mesh quality from Test case 3 for the coarser mesh.

TMI IDW RBF

Workload | 3 | 4 [ 5 3 | 4 | 5 |CPC2]|CTPSCI | TPS
4 1000 1.001 1.003 | 1.001 1.003 1.004 | 0.000  0.000  0.994
16 1.000  1.000 1.000 | 1.000 1.000 1.000 | 0.000  0.000  1.000
64 1.000  1.000 1.000 | 1.000 1.000 1.000 | 0.000  0.000  1.000

256 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000
512 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000

Table 10: Relative mesh quality from Test case 1 for the normal mesh.

TMI IDW RBF

Workload | 3 | 4 [ 5 3 | 4 | 5 |CPC2]|CTPSCI | TPS
4 0.997 0.992 0.988 | 1.003 0.999 0.991 | 0.000  0.000  0.986
16 1.000  1.000 1.000 | 1.000 1.000 1.000 | 0.000  0.000  1.000
64 1000 1.000 1.000 | 1.000 1.000 1.000 | 0.000  0.000  1.000

256 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000
512 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000

Table 11: Relative mesh quality from Test case 1 for the finer mesh.

TMI IDW RBF
Workload | 3 | 4 [ 5 3 | 4 | 5 |CPC2]|CTPSCI | TPS
4 0.999 0.982 0.976 | 0.977 0.990 1.000 | 0.000  0.000  0.997

16 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000  1.000
64 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000
256 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000
512 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.000 0.000 1.000
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Figure 5: Final meshes for multiple subtest of test case 3.



