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Abstract :

The hydromechanical behavior of saturated and partially saturated clay rocks has experienced in last
decades an increase of interest due to potential applications (radioactive wastes disposal, CO2 stor-
age). One of the critical issues is related to the assessment of initiation and evolution of fractures, both
at macroscopic and pore scales. Despite the efforts to numerically capture such phenomena, several
questions are still open, for instance, related to the capability of models to predict fracture localiza-
tion. The present paper aims to assess the use of a Lagrangian particulate approach, based on the SPH
(Smoothed Particles Hydrodynamics) method, which can address in the same formalism two-phase flow,
movement of rigid inclusions and damage evolution in an elastic phase. In order to test the capability of
SPH to describe the elastic damageable behavior, simulations of a bar submitted to a dynamical tensile
load were conducted. Furthermore, we implemented and tested different energy-based formulations of
damage models. The obtained results demonstrate that the SPH method can capture both damage evo-
lution and localization in dynamic conditions. It shows that the size of the damaged zone is independent
of the particle density (equivalent to the mesh size in a finite elements approach) in SPH and only depen-
dent on the size of the smoothing/averaging neighborhood. This methodological study will be helpful to
guide the application of the SPH method to entirely or partially saturated natural rocks.

Keywords: Rock fracture, elastic damage model, size-dependent constitutive
model, Smoothed Particle Hydrodynamics.

1 Introduction
Indurated clays are among the rocks examined for radioactive waste disposal projects. In contempt of
voluminous research carried out in recent decades, their hydromechanical behavior is not yet fully un-
derstood at the pore scale given that the difficulty to observe at nano-scale the initiation of macroscopic
fractures and to recreate the conditions existing in situ. Marschall et al. [1] have introduced the phe-
nomenological gas transport mechanisms in deep argillaceous formations, where the transport of gas
through a very low-permeability clayey rock is controlled by hydro-mechanical properties and state (i.e.
water saturation, porewater pressure, stress state) as well as by the gas pressure. Experimental evidence
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[2] indicates that the gas percolation through saturated pores of clays intervenes by preferential pathways
(which are highly unstable and partially reversible), accompanied by an expansion of the entire samples.
Thus, in a water-saturated host rock, the classical visco-capillary flow (usually considered and well un-
derstood) may not be a suitable description of gas migration. Furthermore, dilatant flows are still poorly
characterized both from experimental and theoretical perspectives. In the current work, we epitomize a
model that can be useful to analyze such coupled phenomena at the pore scale, where the microstructure
of the clay rock is explicitly represented by pores, clay matrix and rigid inclusions (quartz, carbonates,
etc.). The clay matrix will be assumed to be an elastic material with damageable properties. In order
to understand the properties of such a material and to evaluate the possibilities of simulating it, we first
apply different models to the test case of a strain-softening bar under tensile forces. Bažant and Be-
lytschko [3] were the first ones to propose an analytical solution to this dynamic problem taking into
account the strain-softening behaviour of an elastic material. A few years later, Bažant postulated that
the variable representing the damage to the material should be non-local. This proposition was based
firstly on the strain-softening dependency on the microstructure scale [4, 5] and secondly on the fact that
the locality would induce an ill-posed mathematical problem causing a mesh sensitivity of the solution.
On the other hand, the non-local behavior is an inherent component of the Smoothed Particles Hydrody-
namics and can correct such mathematical issues. For example, Vignjevic et al. [6] compared the Total
Lagrangian form of SPH and the Finite Element Method highlighting the absence of mesh dependency
in the solutions of the first one.

Following a normalized-corrected form of the standard SPH formulation [1], this work implements
different energy-based local damagemodels, in order to discuss its pros and cons when compared to local
methods and Total Lagrangian SPH.Wewill show that, in dynamic conditions, the proposed formulation
can capture damage localization. Furthermore, it will demonstrate that the size of the damaged zone
is independent of the particle density (no-mesh size dependence) and relate to a numerical parameter
involved in the SPH method.

2 Methodology

2.1 Physical-model: Strain-softening bar configuration
For the sake of completeness, we recall here the 1D problem of a bi-tractioned bar (Fig. 1).

Figure 1: Bar configuration and boundary limits

Where c is the traction velocity, and ∆L is the displacement of each bar end after a time t. In this
problem, the damage localization is expected at the center of the bar at the time t = L/v where v is the
sound wave speed. Three different bar configurations are proposed here, following [6]: 101, 151 and
201 particles along the longitudinal axis and, respectively, 5, 9 and 11 particles along its orthogonal
axes. If the bar can be regarded as a continuum medium, the different particle densities can be regarded
as different mesh refinements.
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2.2 Numerical model: Smoothing Particles Hydrodynamics
SPH is a meshless method which was initially introduced by Gingold andMonaghan [7] and Lucy [8] for
the treatment of astrophysical problems, and it is nowadays widely applied to simulate transient dynamic
processes with significant deformations of the studied domain. Over the past decades, this model has
been widely used in broader areas: On fluid dynamics, different applications for fluid flow [9, 10] and
multiphase flows [11, 12] are acknowledged. Therefore, solid applications have been explored since
the 1990s after the structural mechanics framework introduced by Libersky and Petscheck [13, 14].
Furthermore, applications in the field of heat transfer have also been proposed [15].

Figure 2: 2D SPH particles: (a) with smoothed length h; (b) with neighbor contributionweight following
a smoothing functionW

The method can be described as a Lagrangian particle method that does not use a structured grid. In
SPH, an overall behavior is given as a result of the interpolation of the total particles contributions
present in an elementary area, without their inter-connectivity. The constitutive laws are discretized in
such domain using a smoothing function (also called kernel interpolation), in order to delimit the particle
influence zone by a given smoothing length h (Fig. 2 - a). Therefore, the value of a field at each particle
is approximated by a weighted sum of the field values at the neighboring particles (Fig. 2 - b). Following
[16], the SPH method works by approximating a given f function using continuous integration and the
Dirac’s delta function δ(x).

f(x) =

∫
f(x′)δ(x− x′)dx′ (1)

The Dirac’s delta is replaced by a smoothed function W in order to compute values of f utilizing the
interpolation over neighboring values:

f(x) =

∫
f(x′)W (x− x′, h)dx′ + errsmoothing (2)

Where h is the smoothing length, and errsmoothing = O(h2) is the approximation error value [16].
Some conditions have to be respected by a smoothing function: it must converge to the Dirac’s function
when h tends to zero, it has a compact support of 2h as well as its integral is normalized to 1 on the
whole domain. W must be an even function in order to achieve the same contribution from particles
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located at the same distance. Furthermore, the fact to be positively defined inside the support domain
has a physical meaning. Similarly, the smoothed derivatives of f can be obtained by the divergence
theorem and integration by parts applied as presented in [16]:

∇ · f(x) =

∫
f(x′) · ∇Wx(x− x′, h)dx′ + errsmoothing (3)

Some well-known smoothing functions have been designed to present high accuracy and numerical sta-
bility in different scenarios, whereas the Gaussian function conferred by Gingold [7] is a good option
to achieve accuracy and stability but with a high computation cost. Thus, for computational conve-
nience, smoothing functions are often expressed as polynomials forms, where among the most common
formulations are the quadratic and cubic spline [16] which are frequently employed in hydrodynamics
frameworks. Hence, the following cubic spline is the smoothing function adopted in the current work
[17]:

W (x− x′, h) =
16

πh3


1
2 − 3r2 + 3r3 if 0 ≤ r < 0.5

(1− r)3 if 0.5 ≤ r < 1

0 if r ≥ 1

(4)

With r = ‖x−x′‖
h and W (x − x′, h) has unit of inverse the of volume. In a discrete model, the value

for each particle is computed utilizing an interpolated weighted sum of contributions from its whole
neighborhood (limited to h radius). The volume of each particle can be defined as:

Vi =
mi

ρi
(5)

Where i is the particle index. Hence, the continuous integrals presented in Eq. (2), moreover (3) can be
approximated by their discrete forms:

f(xi) = fi =
∑
j

fj Vj W (xi − xj , h) =
∑
j

fj
mj

ρj
W (xi − xj , h) (6)

∇fi =
∑
j

(fj − fi)
mj

ρj
∇Wxi(xi − xj , h) (7)

The summation over j covers all neighboring particles. Despite several advantages, using SPH requires
solving some specific drawbacks. Thus, in this work, we have applied somemodel improvements: XSPH
was introduced to improve the stability of simulation by correcting the non-physical noisy fluctuations
of the particle velocities [18, 19]. Normalization of the shapeW function and correction of its derivative
∇W were implemented in order to improve the accuracy of material properties, as shown in [18].

2.3 Elements of the elastic damage modeling
In a continuum damage mechanics approach, the macroscopic degradation process of a Representative
Elementary Volume can be represented by a damage parameter D varying from 0 for sound to 1 for
fully damaged material. The clay rock has been showing to exhibit a linear elastic behavior [20, 21]
for a limited load range, beyond which appears damage behavior that can be coupled to elasticity or
elastoplasticity [22]. Thus, we will consider that the clay material has elastic damageable behavior. In
order to study such damage, we use the energy approach, as introduced by [23, 24]. For isotropic and
nonviscous solid elastic damage material, the thermodynamic potential ω, the reversible Cauchy stress
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σ and the damage energy release Y are given by:

ρω
(
ε,D

)
i

=
1

2
E(D)i ε

2
i =

1

2

∑
j

mj

ρj
E(D)j · ε2j ·W (xi − xj , h) (8a)

σi = ρ
∂ωi

∂εi
= E(D)i εi =

∑
j

mj

ρj
E(D)j · εj ·W (xi − xj , h) (8b)

Yi = −ρ ∂ωi

∂Di
= −1

2
E′(D)i · ε2i = −1

2

∑
j

mj

ρj
E′(D)j · ε2j ·W (xi − xj , h) (8c)

In which E is the Young material modulus and ε is the strain rate. Also, the superscript ′ designates a
function derivative. In a 1D configuration, the damage parameter D influences the elastic modulus of
the material, E(D). Furthermore, based on the work of Ponte-Castaneda and Willis (PCW) [25] (see
also [26] for further use in the context of damage mechanics), we adopted for the damage model (of
microcracking) the following general form:

E(D)/E0 =
1− αD

1 + βD
(9)

Where the subscript 0 relates to an undamaged material, α and β being constant parameters allowing to
define the damage function E(D). The damage energy release becomes in a general form:

Y(D, ε) =
(α+ β)

2(1 + βD)2
· E0 · ε2 (10)

Such a variable can be used to obtain a thermodynamically based damage criterion:

Y(D, ε)− Ycrit(D) ≤ 0 (11)

Where Ycrit is the critical damage energy release. Due to different values of the parameters of Eq. (9),
it can be necessary to introduce the dependency on D parameter into Ycrit in Eq. (11). We will see in
the following that it is possible to obtain the same strain-stress behavior (as shown in Fig. 3) from two
distinct damage models.

Figure 3: Strain-stress curve that can be obtained from two different damage constitutive models given
by Eq. (12a) and Eq. (12b)

They are constructed using some particular values of α and β and if the equivalent condition in Eq.
(11) is satisfied, the critical damage energy release can be obtained by simple algebra in the form of Eq.
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(12a), and Eq. (12b):

1st model

α = 1

β = 0
Ycrit(D) =

E0

2

(
1

εt0
+D( 1

εtu
− 1

εt0
)

)2 (12a)

2nd model

α = 1

β = εtu
εt0
− 1

Ycrit = E0·εt0·εtu
2

(12b)

Moreover, Table 1 resumes the simulation parameters as proposed by Vignjevic et al. [6]:

Parameter Sign Value

Young modulus E0 70.8 [GPa]
Volumetric mass density ρ 1550 [kg/m3]
Initial failure strain εt0 0.022 [−]
Critical failure strain εtu 0.060 [−]
Displacement velocity c 7.0 [m/s]

Table 1: Input data for dynamic simulation of strain-softening bar

3 Results
We first aim at validating the use of a standard SPH formulation with the normalization of the kernel
function and its corrected derivative form. For this purpose, the case study proposed by Vignjevic et al.
[6] was reproduced in order to demonstrate the mesh independency. For this simulation, h-size is equal
to 2.5 (Eq. 4) for three different particle densities (number of longitudinal particles: 101, 151, and 201).
In all simulations, we use the damage model composed of Eq. (12a). Also, the resulting profiles are
calculated as means of 5 nearest neighbors values.

Fig. 4 first presents the results for the longitudinal profile of the damage variable D simulated by Vign-
jevic et al. (a) and by the present study (b). It can be observed that the size of the damage zone does not
depend on the density of the particles, which confirms the absence of mesh dependence. What is more,
SPH results present a smoothed pic of damage variable instead of the 0− 1 discontinuity obtained with
local methods. Another observation concerns the peak values obtained in each configuration. In the
reference results, these values are non-monotonous concerning the number of particles. In the present
simulations, the damage peak value increases with the increase of particle density and seems to converge
toward the value of 0.28 for the densest configuration.

The second line of graphics in Fig. 4 represents the strain rate longitudinal profile. It shows that our
formulation presents an oscillatory aspect absent from the reference result. Nevertheless, qualitatively,
the present result (d) is coherent with the reference one (c) as well as the analytical solution proposed
by Bažant and Belytschko [3].
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Figure 4: Total Lagrangian SPH [6] (left) and normalized-corrected SPH (right) model validation follow-
ing damage (a,b), strain (c,d) and strain-stress (e,f) behavior for different particle densities and following
damage model from Eq. (12a)

In the rest of Fig. 4, the relationship between the strain rate and the 1st Piola-Kirchhoff stress is presented
for the reference (e) and the present model (f). It was calculated for the particle located at the center
of the bar, such particle choice is justified due to the dynamic nature of the phenomenon. With this
representation, we confirm the absence of mesh dependence on post-peak behavior. It can be seen,
that the corrected and normalized SPH formulation presents a linear behavior that follows precisely the
underlying constitutive law.

Another analysis proposed by Vignjevic et al. was to study the influence of three different values of the
numerical parameter h-length (as presented in Eq. 4) for the same bar configuration of 201 longitudinal
particles. The results of the present formulation, illustrated in Fig. 5, show that the size of the damaged
zone is related to such numerical parameter (several studies present this parameter as a characteristic
length of the material).
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Figure 5: Damage parameter D longitudinal profile for h=1.25, h=2.25 and h=3.25 and its influence on
the damage zone size following damage model from Eq. (12a)

Moreover, in order to verify the influence of damage model formulation on the overall behavior of the
system, the same bi-traction simulations are performed with both models (Eq. 12b and Eq. 12a) and
compared in Fig. 6. Despite different damage formulations, both models result in the same strain-
stress constitutive law. Observing the longitudinal profile of the damage variable D (a), the second
model shows lower peak values but stays monotonous and converges with increasing particle density.
Also, the longitudinal profiles of displacement (b), strain (c) and 1st Piola-Kirchhoff stress (d) show
that the differences between both damage models are no longer visible. Thus, we can conclude that the
introduction of a new damage formulation only influenced the damaged zone, while keeping the same
behavior of the other parts of the system.

Figure 6: Longitudinal bar profile of damage (a), displacement (b), strain (c) and stress (d) for the
energy-based damage models from Eq. (12a) (solid lines) and Eq. (12b) (dotted lines) for different
particle densities.
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4 Concluding remarks
This study aims to enhance the understanding of the mechanical behavior of damageable elastic solid
material, an essential component of the coupled hydromechanical phenomena needed to model the par-
tially saturated clay rocks. The computations were carried out using a non-local particulate Lagrangian
model (Smoothed Particles Hydrodynamics), where a normalized-corrected formulation was validated
with simulations of a strain-softening bar under tensile stress. Furthermore, the obtained results show
that the proposed model can capture both damage growth and localization in dynamic conditions. The
non-local computing method results in a no-mesh size dependency of the damage length zone, overtak-
ing the ill-posedness of the underlying mathematical problem. However, this size is related to the SPH
numerical parameter, which defines the size of the smoothing/averaging neighborhood.

Two different energy-based models, with different formulations but providing the same strain-stress
curve, were simulated. It has been shown that the introduction of different damage formulation influ-
enced only the results inside the damaged zone. This methodological study will be helpful to guide the
application of the SPH method to partially or entirely saturated natural rocks.
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