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Abstract :

This paper aims to study the dispersion phenomena of acoustic waves propagating in a medium com-
posed of a periodic mixture of different poroelastic saturated materials. At mesoscale, each poroelastic
saturated material are assumed to be considered by the Biot model. We will present and compare two
computational procedures for estimating the effective phase velocities and attenuation of plane waves
in the period poroelastic structure at the macroscopic scale. First, wave-based Bloch analysis was em-
ployed to derive a finite element formulation which leads to a quadratic complex eigenvalue problem.
The equivalent fast/slow compressional as well shear wave modes may be selected by analyzing the
computed complex wave numbers. Second, we used the asymptotic homogenization method to derive the
effective properties (mass, poroelastic, dynamic permeabilities) which allows us to estimate the effective
wave dispersion equation. The polarization of wave modes at the cell level may be reconstructed from
macroscopic solution. Numerical results show that both methods could provide well-matched estima-
tions of the effective phase velocities and attenuation within the first Brillouin zone associated with the
periodic structure.

Mots clefs : wave dispersion, periodic, poroelastic, Bloch wave, homogeniza-
tion, finite element

1 Introduction
The analysis of wave propagation in poroelastic media is of great interest in many engineering disciplines
such as geophysics, petroleum, biomedical engineering, construction or vehicle materials, etc. The Biot
theory [1] has been used in many studies of the dynamic behavior of many kinds of natural materials
(rocks, soils, foam, biological tissues (wood and bone)) or synthetic materials (foams, ceramics). Howe-
ver, the dispersion phenomenon has not yet been fully investigated in the situations in which the medium
is not homogeneous but heterogeneous at the mesoscale.

This study aims to study the behavior of plane waves propagating in a mesoscopic poroelastic medium in
which each REV (Representative Elementary Volume) is amixture of two different poroelastic materials.
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In this study, we distinguish 3 different scales : the microscale which corresponds to the characteristic
size (e.g pore and skeleton sizes) of both porous materials ; the mesoscopic scale which corresponds to
the heterogeneity’s size, and macroscale which corresponds to the wavelengths. By assuming that the
mesoscopic heterogeneity is much greater that the pore sizes of the porous materials but smaller than
wavelengths, the dynamic behavior of each poroelastic material at the mesoscale may be described by
using Biot’s model. Two methods for computing the wave characteristics (phase velocity and attenua-
tion) at the macroscale have been considered and compared from each to other. First, a Bloch-based
finite element formulation is introduced for computing the complex wave numbers in the first Brillouin
domain of periodical poroelastic structures with non homogeneous and generic frequency-dependent
terms such as the dynamic permeability/tortuosity. Second, a homgenized poroelastic model which was
derived by using the two-scale homogenization method was employed. To establish the homogenized
model, the effective coefficients are determined by solving the local problems at REV level. The com-
plex wavenumber will be computed by solving the dispersion equation of the homogenized model [6, 5].

2 Biot’s poroelastic model
Governing equations. We consider the problem of wave propagation a fluid-saturated anisotropic po-
roelastic material. To determine the stationary response of the system under an harmonic excitation
with angular frequency ω, we assume a time-dependence eiωt for all movement quantities Y (x, t), i.e
Y (x, t) = y(x, ω)eiωt. In what follows, the termω in y(x, ω)will be omitted for simplification purposes.

At each material point x in this medium, the displacement vectors of solid and fluid phases are denoted
by u(x) and uf (x), respectively. By using Biot’s model, the constitutive equations of an anisotropic
poroelastic material are given by :

σ = D : ε−αp, (1)

p = −M (α : ε+∇ ·w) , (2)

where σ and p denote the total stress tensor and the interstitial pore pressure, respectively ; ε denotes the
strain tensor : ε = 1

2

(
∇u+∇uT

)
; w is the relative displacement between the fluid and solid phases

weighted by the porosity :w = φ(uf −u) with φ is the porosity ; the fourth-order tensor D denotes the
elasticity tensor ; the second-order tensor α is the Biot effective tensor and the scalar M is the Biot’s
modulus. Neglecting the body forces (other than inertia), the equations describing the linear poroelastic
wave propagation in the frequency domain read :

− ω2ρu− ω2ρfw −∇ · σ = 0 (3)

− ω2ρfu− ω2ãw +∇p = 0, (4)

where ρ = φ ρf +(1−φ) ρs is the mixture density, with ρs and ρf are the solid and fluid mass densities,
respectively ; ã is the frequency-dependent visco-dynamic second-order tensor which depends on the
permeability and tortuosity of the medium :

ã(ω) =
ρfa∞

φ
+

η

iω
k−1(ω) (5)

where a∞ is the static tortuosity tensor, η is the fluid’s viscosity, and k is the permeability tensor which
may be a frequency-dependent tensor.
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Weak formulation. Let δu and δw two vector-valued test functions of u andw, respectively, the weak
formulation of the problem (Eqs. 3,4) in a domain Ω with the boundary Γ reads :

− ω2

∫
Ω
δu · ρu− ω2

∫
Ω
δu · ρfw +

∫
Ω
δε : σ −

∫
Γ
δu · (σnΓ) = 0 (6)

− ω2

∫
Ω
δw · ρfu− ω2

∫
Ω
δw · ãw −

∫
Ω
∇ · (δw)p+

∫
Γ
δw · (pnΓ) = 0 (7)

where nΓ is the normal unit vector to Γ.

3 Floquet-Bloch wave analysis
Weak formulation for Bloch wave problem. Let us consider an infinite periodic poroelastic domain
Ω ∈ Rd whose the lattice is generated by a rectangular parallelepiped primitive cell ΩE : ΩE =∏d
j=1]0, `j [ where d is the dimension of the problem. In this domain, a generic property P satisfies

P (xj + `j) = P (xj). By considering a primitive cell of the periodic problem and by using the Bloch
theorem, the dispersion of plane wave propagation problem this problem can be determined by consi-
dering the Floquet-Bloch ansatzs :

u(x) = U(x,k)e−ik·x, w(x) = W (x,k)e−ik·x, (8)

where U(x,k) andW (x,k) are ΩE-periodic function, k is wavenumber vector : k = kn, with the
unit vector n denotes the wave direction and k is wave number in the direction n. Then by applying the
test functions δu and δw of u and v, respectively, under the forms :

δu(x) = δU(x, k)eikn·x, δw(x) = δW (x, k)eikn·x, (9)

into Eqs. 6-7, and by applying the periodic condition we obtain the weak formulation written for a cell
domain ΩE :

− ω2

∫
ΩE

δU ·
(
ρU + ρfW

)
+

∫
ΩE

δE : Σ + ik
∫

ΩE

(δEn : Σ− δE : Σn)

+ k2

∫
ΩE

δEn : Σn = 0 (10)

− ω2

∫
ΩE

δW ·
(
ρfU + ãW

)
−
∫

ΩE

(∇ · δW )P − ik
∫

ΩE

[(n · δW )P − (∇ · δW )Pn]

− k2

∫
ΩE

(n · δW )Pn = 0 (11)

in which the functions E , En, P , Pn, Σ, Σn are expressed by :

E = {∇U}s, En = {n⊗U}s (12)

P = −M [α : {∇U}s +∇ ·W ] , Pn = −M [α : ({n⊗U}s) + n ·W ] (13)

Σ = Du : {∇U}s +Mα(∇ ·W ), Σn = Du : {n⊗U}s +Mα (n ·W ) , (14)

where Du is the undrained elasticity tensor defined by : Du = D +Mα⊗α.
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Computing the wave numbers using FEM. Applying finite element discretization of the systems of
equations (Eqs. 10-11) leads to a nonlinear eigenvalue problem :

[
−ω2A0(ω) + ikA1 + k2A2

]( Uh

Wh

)
= 0 (15)

whereUh andWh denote the nodal solution ofU andW , respectively. The expressions of the matrices,
which may be derived directly from Eqs. (10-11), are long and not given here.

Noting that thematrixA0 in (15) contains the dynamic tortuosity tensor which is a frequency-dependent,
the dispersion relation will be solved by fixing ω and a direction of wave propagation n, then seeking
the the solutions of the quadratic eigenvalue problem (15) with respect to k.

In principle, for a given FE-discretized model, one can find 2 × ndof eigenvalues k, where ndof is the
number of degrees of freedom. The real parts kR of the eigenvalues are distributed symmetrically with
respect to zero ; a half of these eigenvalues correspond to the waves propagating in direction +n, while
the other half of the waves propagate in the opposite direction −n. Note that the condition of positive
dissipation requires kRkI < 0. We are interested in propagative modes which have the smallest atte-
nuation. Consequently, when solving the eigenvalue problem (15), it is not necessary to determine all
2 × ndof eigenvalues of the system but only some of them, which have kI very small. For this reason,
when solving the eigenvalue problem, it is more convenient to introduce a new variable λ := ik , so that
the most propagative modes correspond the new eigenvalues with the smallest real parts λR.

4 Numerical examples
The aim of this section is to illustrate the dispersion analysis of bulk waves propagating in a infinite po-
roelatic media with mesoscopic heterogeneity, as described above. In particular, we compare the results
obtained by the Floquet-Bloch analysis with the corresponding results computed using the homogeni-
zed medium model. We consider 2D periodic poroelastic structures with the square REV composed of a
circular inclusions (Y2) and a matrix (Y1) (see Fig. 1). The size of the REV is given by `1 = `2 = 1 mm
and the radius of the inclusion is r = 0.25 mm. Both poroelastic materials in Y1 and Y2 are assumed
to be isotropic and saturated by water. The mechanical properties of these two poroelastic materials are
presented in Fig. 1 (right). In this table,Kb, µb denote the drained bulk modulus and the shear modulus
of the drained porous materials.

Rock (Y1) Sandstone (Y2)
ρ kg.m−3 2650 2650
φ - 0.15 0.36
Kb - 12.7 1.37
µb GPa 20.3 0.82
α - 0.6825 0.9658
µ GPa 12.503 5.7096
k0 m2 0.1× 10−12 1.6× 10−12

ρf kg.m−3 1000 1000
Kf GPa 2.25 2.25
η Pa.s 10−3 10−3

a∞ - 1 2.8

Figure 1 – Finite element mesh of a square REV (`1 = `2 = 1 mm) with circular inclusion (r =
0.25 mm); the subdomains Y1 and Y2 are found in gray and blue zones, respectively (left) ; Material
parameters in both domains (right)
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At each frequency value, we estimate the phase velocities and the dissipation factors of three funda-
mental wave propagation modes of the effective medium. These modes correspond to the fast quasi-
compressional wave (P1-wave), the slow quasi-compressional wave (P2-wave) and the “quasi shear”
wave (S-wave). Using a computed complex wave number k, the phase velocity Vph = ω/Re(k) is eva-
luated, then also the dissipation factor Q−1 (which is inverse of the quality factor Q) is introduced by :
Q−1 = −2Im(vc)/Re(vc), where vc = ω/κ is the complex phase velocity. In what follows, we compare
the results obtained by the two proposed methods, i.e by using the Floquet-Bloch analysis and by using
the model of the homogenized medium, the same finite element mesh is employed to discretize the REV
by triangular elements with sizes ∼ 0.025`.

Considering plane waves propagating in e1-direction, we investigate the dispersion of wave modes (P1,
P2 and S) in a frequency range from 10 Hz to 1MHz. For the Floquet-Bloch analysis, the model consists
of ∼ 29.3 thousands DOFs, but we only seek for 30 lowest eigenvalues.

Figures 2a and 2b present the dispersion of phase velocities and the corresponding dissipation factors
of the effective P1, P2 and S waves with respect to frequency. While the wave velocities of the P1 and
S modes are nearly frequency-independent within the studied frequency range, a significant velocity
dispersion is observed for the P2 mode. On the contrary, the attenuations of the P1 and S modes, being
very small in low frequencies, increase exponentially with frequencies ranging 10 Hz to 100 kHz before
reaching the critical frequency. The slow compressional wave P2 is much more attenuated than two
others (P1 and S), especially at low frequencies.
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Figure 2 – Case of REV with circular inclusions : Dispersion of (a) phase velocity and (b) dissipation
factor of the modes P1 (fast quasi-compressional wave), P2 (slow quasi-compressional wave) and S
(quasi shear wave) ; wave direction n ≡ e1, geometry of REV : ` = 1 mm, a = b = 0.4 mm

The comparison shows that the dispersion obtained by the twomethods provide results which match very
well at almost frequencies in the studied frequency range. The dispersion curves obtained by the Floquet-
Bloch analysis diverge from those obtained by the homogenization-based predictions at frequencies
greater than f = 105 Hz. This phenomenon may be explained by comparing the estimated wavelengths
of effective modes with the period of the heterogeneity variation, which determines the size ` of the
RVE and, thereby also the irreducible Brillouin zone. The shortest wavelengths at f = 105 Hz and at
f = 3.98 × 105 Hz are the ones of the P2 modes and equal to λP2 = 8.6 mm and λP2 = 2.6 mm,
respectively. At f = 106 Hz, the S mode presents the smallest wavelength λS = 2.03 mm which, thus,
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tends to the limit wave length λmin = 2` = 2 mm feasible within the irreducible Brillouin zone. Clearly,
the homogenization-based wave dispersion analysis is valid for longer wave lengths, λ� λmin .

5 Conclusions
This paper presents a formualtion using Floquet-Bloch wave decomposition (FB) method to analyze the
plane wave propagation in periodic poroelastic media. To the best of our knowledge, the Floquet-Bloch
decomposition-based analysis of plane waves in poroelastic meadia has not been treated in the literature
[2]. The results are compared with the ones obtained by using asymptotic homogenization methods
which are previously presented previous works [6, 5].

It has been shown that the homogenization model provides an accurate and computationally quite ef-
ficient method to analyze the wave dispersion, when compared to the Bloch method. However, the ap-
plicability of the homogenization method is limited to wave lengths which should span at least several
periods of the heterogeneous structure to adhere the scale separation assumption.

Further works already in progress concern validation of the homogenized models of fluid saturated
porous media with large contrasts in the permeability and poroelastic coefficients [3, 4]
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