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Résumé
Les mousses acoustiques sont de plus en plus utilisées dans l’industrie en remplacement des milieux
fibreux pour des raisons de santé notamment. Leurs propriétés acoustiques dépendent fortement de
leurs microstructures (distribution de taille de pores, présence de membranes). L’objectif de ce travail
est d’étudier l’influence d’une distribution étendue de tailles de pores sur les propriétés acoustiques et
élastiques. La microstructure des mousses est reconstruite en trois étapes. La première étape consiste
en la génération d’un empilement aléatoire de sphères, généré par la méthode des éléments discrets.
Ensuite, une tessellation de Laguerre à partir des centres et des rayons des sphères est réalisée pour
construire le squelette de la mousse. Finalement, les bords de Plateau ayant une section triangulaire
concave d’épaisseur variable, sont obtenus par minimisation d’énergie de surface à l’aide du logiciel
Surface Evolver. Les propriétés acoustiques sont calculées à l’aide de simulations par la méthode des
éléments finis.

Abstract

An acoustic foam is utilized increasingly in industrial by replacing the fibrous layer because of partic-
ularly a health reason. Its acoustic properties depend heavily on its microstructures (pore size’s distri-
bution, membrane presence). The aim of this work is to study the influence of an extended of pore size’s
distribution on its properties acoustic and elastic. The microstructure of the acoustic foam is created in
three steps. Firstly, by using the discrete element method, a random stack of sphere is generated. After
that, a tessellation of Laguerre from the center and radius of the spheres is carried out to build a foam
skeleton. Finally, the Plateau borders, that have a concave triangular section of a variable thickness, is
obtained by a minimizing of surface energy with the help of a Surface Evolver software. A simulation
with the help of the finite elements method evaluates the properties acoustic.

Mots clefs : Mousses, propriétés acoustiques, relations structure, propriétés,
stratégie numérique, multi-échelle
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1 Introduction
Nowadays, cellular foams are a materials which are utilized in a lot of domains : structure, thermal, or
acoustical. Particularly, an acoustic foam is utilized increasingly in industrial by replacing the fibrous
layer because of many reasons that the most important of its is health reason. The microstructure of
acoustic foam influences heavily on its acoustic properties via its parameters : pore size distribution,
membrane presence and so on. The study of the microstructure of the acoustic foam has been carried out
by several works. The aim of its to validate the transport parameters (viscous and thermal permeability,
viscous and thermal tortuosity, ...) together with the sound absorption coefficient by introducing the
input parameters on a microstructure model. The works are realized with a membrane fully opened or
fully closed. In 2012, Hoang et al. [25] are studied the microstructure by using the Kelvin’s cellular by
considering a fully open foam with a uniform membrane closure ratio. Recently, based on a Kelvin’s
cellular taking into account both of the proportion of closed window and the closure ratio, Trinh et al.
[26] gave a good estimates of macroscopic parameters.

In this paper, we focus on a influence of a pore size distribution on a acoustic properties of the foams. In
acoustic domain, the previous works has been studied with a pore-size distribution constant by using the
ideal periodic unit cell (PUC) [26, 8, 20, 25]. However, the variation of pore size extended distribution
has been carried out on a elastic problemwhich are characterized by a foam closed or opened completely
[22]. Thus, this work presents a microstructure model of the acoustic foam which the pore size’s distri-
bution satisfied a Gamma’s law. Firstly, a spheres packing is created obeying a Gamma distribution by
using the discrete element method (DEM). An algorithm using a software voro++ and together the pa-
rameters of a centers and a radius of the random multi-sized are applied to generate a random Laguerre
tessellation. After that, a microstructure model are finalized by creating the borders form the random
Languerre tesselation. By using the algorithm for the foam relaxation, this work allows us to obtain a
microstructure of an acoustic foams which is satisfied a Plateau’s law.

A calculations of acoustic properties are realized with some of examples : calculation of visco-thermal
parameters, calculation of sound absorbing properties. The parameters of both of calculations are shown
in an illustration of numerical results. In this part, the permeability is satisfied a Sampson equation. In
the future works, we will focus on a validation of methodologies for another parameters.

2 Microstructures model

2.1 Random multi-sized dense spheres packing
According to the literature, there are various methods can be exploited to generate the random dense
multi-sized spheres packing, e.g. sequential-deposition, molecular dynamics and collective rearrange-
ment methods [7]. In this work, we use the discrete element method (DEM) with the open source code
LIGGGHTS [27]. In this method,N spherical particles with arbitrary radius distributions are randomly
generated no velocity initial within a cube domain. In the initial state, we have a system of overlapping
spheres. The spheres then move because of a frictional force dependent of distance between two spheres,
defined by hertz model [28]. In order to avoid boundary effects, the periodic boundary conditions are
used. When steady state conditions are reached (i.e. zero velocity for the entire set of spheres), the
simulation stops. The dimensions of cube domain are chosen to have a desired volume fraction of pack-
ing. In this work, the desired volume fraction is f = 70%, we have a dense system of spheres. Fig. 1
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illustrates a packing of 100 random spheres, they have the volume satisfying a distribution of Gamma.

Figure 1: A spheres packing with CVSP = 0.7 for N = 100 and f = 70%.

2.2 Random Laguerre tessellation
Random Laguerre tessellations is a weighted generalization of the well-known Voronoi tessellation. A
random Laguerre tessellation in R3 can be defined as follows [2]: given a set of random spheres S =

{si(xi, ri), xi ∈ R3, ri > 0, i ≥ 1} inR3, xi and ri is the center and radii of sphere si, respectively. The
3-dimensional space is filled by a system of convex polytopes, so-called Laguerre cellsC = {ci, i ≥ 1},
which is defined as

ci = {x ∈ R3 : ‖x− xi‖2 − r2
i ≤ ‖x− xj‖

2 − r2
j , ∀j 6= i}, (1)

where ‖.‖ denotes the Euclidean norm in R3. If all spheres have same radii, the Voronoi tessellation is
obtained. Because cell facets are not forced to be equidistant to the cell generators (i.e. center of sphere),
the Laguerre tessellation allows to generate a more wider range than the Voronoi tessellation. Note that,
in R3, the Laguerre tessellations are a normal tessellation [17], it means that each facet is intersection
in exactly 2 cells and each edge is intersection in exactly 3 facets. For a detailed discussion of Laguerre
tessellations, the readers are referred to [17, 2].
In this work, the Laguerre tessellation using the centers and the radius of the random multi-sized dense
spheres packing, is generated with help of the open-source software voro++ [24] and imposing periodic
boundary conditions at the border of the cube domain in order to avoid boundary effects. Fig. 2 illustrate
a Laguerre tessellation of a packing of 100 random spheres.
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Figure 2: A Laguerre tessellation based on a SP with CVSP = 0.7 for N = 100 and f = 70%.

2.3 Plateau borders
In the case of dry foam, where the liquid fraction is almost zero, the structure is set of polyhedral cells
that are bounded by slightly curved thin films. At equilibrium state, the structure satisfies the laws of
Plateau [21]: (1) the films always meet in threes along an edge and they must do so at an angle of 120◦,
(2) only four edges meet at a vertex, and they do so at an angle of arccos (−1/3) ≈ 109.47◦, (3) the
liquid films are the surfaces of constant mean curvature. Awet foam is a foamwhere the liquid fraction is
more than one percent, most of its liquid is contained in so called Plateau borders. They have a concave
triangular section and a locally varying thickness, which is maximum at the junction and minimum at
the center. In the case of solid polymer foams, we can consider they are as a liquid that was frozen and
thus shares many geometric properties of a wet foam [18]. In this context, the terms Plateau borders are
referred to as struts and films.
Forget about the curvature of the films, the dry foams that is based on a normal tessellation is dictated by
topology induced by Plateau’s laws. A foam satisfied fully Plateau’s laws can be obtained by a ’relaxed’
Laguerre tessellation [1, 14]. Andrew Kraynik [12, 13] developed a algorithm for the foam relaxation.
In this work, based on this algorithm, we use the random Laguerre tessellation to simulate the polymer
solid foams by replacing the edges to struts of section triangular. After that, the system of cells and
struts is relaxed until Plateau’s laws are satisfied. The numerical procedure for relaxing the tessellation
is based on the Surface Evolver software developed by Ken Brakke [6]. Fig. 3 illustrates a system of
Plateau borders generated by Surface Evolver software.

2.4 Identification of pore’s size distribution
The pore size distribution of real foams is identified with the cell volume distribution of the Laguerre
tessellation via the mean of pore volume V and their variation coefficient CV = δ/V , where δ is the
standard deviation of pore volume.
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Figure 3: Plateau borders

The properties of random spheres packing, V SP and CVSP , must be choose such as the proprieties of
the Laguerre tessellation and of the foams are identified, it means V LT = V foam andCVTL = CVfoam.
Easy to see, V SP = f × V TL where f is the volume fraction of the spheres packing. Fan et al. [9]
and C.Redenbach [23] construed the graphical relation between the variation coefficient of the spheres
packing and that of the corresponding Laguerre tessellation for a system of N = 10000 spheres. Here,
because of the calculation cost limitation (the calculation cost increases rapidly with number of spheres
or number of cells), we fix N = 100 spheres and reconstruct the graphical relation. More precise,
N = 100 spheres with the volume distribution follow a Gamma distribution are generated inside a cube
domain such as the volume fraction f = 70%, we keep the volume mean constant and the variation
coefficient is chosen between 0.2 and 1.6 at intervals of 0.2. Ten realizations are generated for each set
of parameters. The values observed for the CV of the cell volumes are plotted in Fig. 4. In order of
comparison, the 3 dotted lines corresponding to a case of V = 40%, 50%, 60% are shown in the Fig. 4
[23]. Thanks to this figure, we can choose the value of CVSP to have the desired value of CVLT .

3 Calculations of acoustic properties

3.1 Calculations of visco-thermal parameters
The set of eight transport parameters is computed by using the hybrid micro-macro method which com-
bines finite elementmodeling and semi-phenomenological models (JCA and JCAL). Thismethod is used
and validated in the work of Perrot et al. [19]. The two first parameters, purely geometrical, (φ,Λ′) are
estimated by direct spatial integration on the volume and surface elements of the microstructure. The
open porosity φ is defined as the fraction of the interconnected pore fluid volume to the total bulk volume
of the porous medium, the thermal characteristic length Λ′ is defined as twice the ratio of the total pore
volume to its surface area. The six remaining transport properties are computed by solving the local
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Figure 4: Variation coefficient of the volumes of the Laguerre cells CVLT versus CVSP .

equations governing the asymptotic frequency-dependent visco-thermal dissipation phenomena at the
microscopic scale.
The static viscous permeability k0 (or the static resistivity σ where σ = k0/µ with µ is the dynamic
viscosity of the fluid) reflects the ability to oppose a flow of a material. The static viscous tortuosity α0

characterizes the dispersion of the microscopic velocity field for quasi-steady movements of the viscous
fluid flow. Both of these parameters are computed from the Stokes problem in the fluid phase [10, 3]:

µ∆v−∇p = −G in Ωf

∇v = 0 in Ωf

v = 0 on ∂Ω

v and p : Ω− periodic

where v, p are the velocity and pressure of the fluid, respectively. G is the macroscopic pressure gradient
acting as a source term. It can be shown that the local field of the static viscous permeability k0 is
obtained from the local velocity field as v = −k0

µ G. The components of the static viscous permeability
tensor are calculated:

k0ij = φ
〈
k0ij

〉
(2)

and the components of the tortuosity tensor are obtained from:

α0ij =

〈
k0pik0pj

〉
〈k0ii〉

〈
k0jj

〉 (3)

The symbol 〈.〉 indicates a fluid-phase average.
In the high frequency range, the fluid tends to behave as a perfect one. The potential flow problem is
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formally identical to the electrical conduction problem [5, 4]:

∇.E with E = −∇ϕ+ e in Ωf

E.n = 0 on ∂Ω

ϕ : Ω− periodic

where e is a given macroscopic electric field, E is the solution of the boundary problem having−∇ϕ as
a fluctuating part, and n is the unit normal to the boundary of the fluid phase. The viscous characteristic
length Λ and the high frequency tortuosity α∞ are calculated by:

Λ =
2
∫

Ωf
E2dV∫

∂Ω E2 dS, α∞ =

〈
E2
〉

〈E〉2
(4)

The static thermal permeability k′0 and the static thermal tortuosity α′0 can be computed by solving the
thermal conduction problem where the solid skeleton is considered a thermostat:

∇2u = −1 in Ωf

u = 0 on ∂Ω

where u is the local temperature field. The mean value of the excess temperature field in the fluid phase
is directly related to the definition of the thermal permeability:

k′0 = 〈u〉 (5)

The static thermal tortuosity α′0 is given by:

α′0 =

〈
u2
〉

〈u〉2
(6)

3.2 Calculations of sound absorbing properties
Follow the equivalent-fluid approach, a rigid porous medium is substituted by an effective fluid, this
fluid can be characterized by the effective density ρef (ω) and effective bulk modulusKef (ω) as follows
[11, 15]:

ρef (ω) = ρ0α∞

[
1 +

f($)

$

]
(7)

Kef (ω) = Ka

[
γ − (γ − 1)

[
1 +

f ′($′))

j$′

]−1
]−1

(8)
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where ρ0 is the air density, Ka is the adiabatic bulk modulus of air, and γ is its specific heat ratio. $
and $′ are dimensionless frequencies, f($) and f ′($′) are shape functions:

$ =
ω

ν

k0α∞
φ

, $′ =
ω

ν ′
k′0
φ

(9)

f($) =

√
1 +

M

2
j$, f ′($′) =

√
1 +

M ′

2
j$′ (10)

M =
8k0α∞
Λ22φ

, M ′ =
8k′0
Λ′2φ

(11)

In these equations, ν ′ = ν/Pr with ν is the kinematic viscosity and Pr is the Prandtl number,M and
M ′ are dimensionless shape factors.
The properties of the equivalent homogenenous porous medium are characterized by the equivalent
density ρeq(ω) and equivalent bulk modulusKeq(ω):

ρeq =
ρef (ω

φ
, Keq(ω) =

Kef (ω)

φ
(12)

Assuming plane wave solutions varying as exp [j(ωt− qeq(ω)x], where qeq(ω) is the wave number of
the equivalent fluid medium. The wave number and the characteristic impedance of the equivalent fluid
medium are determined by:

qeq(ω) = ω

√
ρeq(ω)

Keq(ω)
, Zceq =

√
ρeq(ω)Keq(ω) (13)

The sound absorption coefficient at normal incidence of a porous medium of thickness d backed by a
rigid wall is evaluated by:

αn = 1−
(
Zn − 1

Zn + 1

)2

(14)

with Zn the effective normal impedance on the free face of the excited material:

Zn = −j
Zceq
Z0

cot (qeqd) (15)

where Z0 is the characteristic impedance of air.

3.3 Illustration of numerical results and scaling laws
3.3.1 Scaling laws

First, we check numerically that a generated foam structure corresponding to a given monodisperse pore
size with a varying R0 follows a scaling corresponding to the Sampson law [16] :(

k0

D2

)
∝
(
R0

D

)3

(16)

where : k0,R0 andD are permeability, mean of aperture size and size pore respectively. The numerical
results are fitted by the Sampson’s law and are shown in the Fig. 5. In this figure, k0

D2 is proportional to(
R0
D

)3 by a factor σw = 1.527. The permeability is computed by solving the Stoke’s problem. We note
that, in this example, there are 10 pores of size constant.
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Figure 5: Numerical results and Sampson’s law fit

3.3.2 Illustration examples

The transport parameters and the absorption coefficients are calculated in two cases of monodisperse
pore S1 and S2 with different of the mean of closure with ratio 〈rc〉 which is calculated as follows :

〈rc〉 =

〈
1− Aop

Aw

〉
(17)

where : Aop and Aw are the aire of the open part and the total aire of the windows respectively. Figures
6a and 6b show the geometry and mesh of the microstructure model in the sample S2.

The nature of the foam is anisotropic and is taked into account this microstructure model. Thus, the
acoustic properties of the foam are different in three directions and are shown in the Table 1.

φ Db(µm) 〈rc〉 k0(×10−10m2) k′0(×10−10m2) Λ(µm) Λ′(µm) α∞

S1 x 0.983 810 0.33 121 326 543 811 1.05

y 0.983 810 0.33 116 326 534 811 1.06

z 0.983 810 0.33 113 326 541 811 1.05

Avg 0.983 810 0.33 117 326 539 811 1.05

S2 x 0.983 810 0.65 46 233 352 620 1.16

y 0.983 810 0.65 44 233 352 620 1.16

z 0.983 810 0.65 42 233 338 620 1.16

Avg 0.983 810 0.65 44 233 347 620 1.16

Table 1: Transport parameters in two examples

The absorption coefficient of two examples are plotted in the Fig. 7 in the frequency domain. We see
that, in the high frequency, the absorption coefficient of the sample S1 is superior than the sample S2

because of the influence of the closure ratio.
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(a) (b)

Figure 6: Geometry and mesh of sample S2
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Figure 7: Comparison of absorption coefficient in two case S1 and S2 with the same thinkness 20mm

4 Conclusions
In this study, a microstructure model of an acoustic foam has been developed. This model is created by
using a Laguerre tessellation based on random sphere packing and together Plateau’s border geometry.
By taking into account a size pore distribution and a membrane presence, this model allows us to study
the influences on a acoustic properties. The numerical application has been carried out by the calcula-
tions of visco-thermal parameters and sound absorbing coefficient. The illustration of numerical results
shows the effect of the aperture size on the permeability and is obeyed the Sampson’s law. In the future
works, this model can be used by taking into account the proportion of closed window and the closure
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ratio to study the multi-dispersed size foams.
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