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Abstract :

A liquid foam is a dispersion of gas bubbles in a soapy liquid matrix. It is a yield-stress material, solid-
like at low stresses and which can flow under sufficiently large external stresses. Liquid foams are used
in a diverse array of applications for their large specific area, light weight, and insulating properties.
Foams have a multi-scale structure : they are composed of millimetric bubbles separated by submi-
crometric films whose surfaces are covered with monolayers of surfactant molecules. The stability and
rheology of foams depend strongly on the type of surfactants used to generate them, and the link bet-
ween micro and macro scales remains an active area of research. Here we investigate this link at the
bubble scale by numerical simulations. We focus on the elementary topological rearrangements, called
T1 events, in a two-dimensional arrangement of bubbles submitted to shear. We use a two-phase flow
level-set method that has been adapted to include surfactant dynamics (Titta et al., Journal of Fluid Me-
chanics, 2018) and extend this parametric study. In particular, we examine how the adsorption depth, a
measure of surfactant distribution between the bulk and surface, influences energy dissipated in the flow.
Our simulations show that the integrated rate of viscous dissipation does not account for all the work
expended in the material during T1 events. We explain this observation in terms of a surface dissipation
generated through Marangoni stresses and surfactant adsorption/desorption mechanisms occurring at
the gas-liquid interfaces.We investigate how the adsorption depth affects surfactant transport and energy
dissipation in the system.
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1 Introduction
Liquid foams consist of assemblies of gas bubbles in a soapy liquid matrix. Because of their light weight,
large specific area, mechanical and insulating properties, foams are in demand for a wide variety of
practical applications. In construction, for example, lightweight structural and insulating materials can
be produced from precursory liquid foam mixtures (e.g. foam concrete and spray foam insulation). For
fighting fires, large volumes of foam can be generated with little raw material. Other major areas of foam
use include food processing, chemical processing and decontamination. Therefore, in order to tailor
foams for their varied applications, it is important to understand their mechanical properties, namely
their stability and rheology. These macroscopic mechanical properties are known to depend heavily
on the type of surfactant molecules used to generate the foam [1]. Details of the interactions between
mechanisms at microscopic and macroscopic scales so far remain unclear.
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At the macroscopic scale, a foam is considered as a continuous medium described by constitutive laws.
Classified as a complex yeild-stress fluid, liquid foams are solid-like at low stresses, but flowing under
large external stresses [2]. However the multiplicity of length and time scales found within its structure
makes modeling its rheology particularly difficult. Focusing inwards from the macroscopic scale, liquid
foams are composed of milimetric gas bubbles separated by a net of sub-micrometric liquid films, which
contain nanometric monolayers of surfactants at both gas-liquid interfaces (Figure 1). The surfactant
monolayers act as a stabilizing agent at interfacial and film scales, inhibiting film rupture. During shear
deformation at the bubble scale, surfactant transport at film and interfacial scales feedback on the two-
phase flow.

Figure 1 – Foams contain structures at multiple scales. The global dynamical behavior of the foam
results from a complex interaction of the different physical mechanisms produced at each scale. Repro-
duced from [3].

When liquid foams are submitted to shear, a rearrangement occurs at the bubble scale. This is defined
as a T1 process, shown in Figure 2. Bubbles 1 and 2 move to the right as bubbles 3 and 4 move to the
left. During a T1 event, the film separating neighboring bubbles 2 and 3 is eventually collapsed to an
unstable vertex joining all four bubbles, then a new film is spontaneously produced. The newly created
film results in switched neighbors, and thus a new configuration.

Figure 2 – Schematic view of a T1 rearrangement of 2D bubbles. Reproduced from [4].

In this study, we investigate a T1 rearrangement as a dynamical process influenced by the interplay of the
effects of fluid flow, surface tension, surfactant transport. The coupled dynamics are complex and hard
to describe because they occur and interact at multiple scales (Figure 1). We, therefore, approach this
problem using numerical simulations. The level-set method is used here in large part because it gives
a simple method for tracking interfaces, where the surfactant transport and flow dynamics are coupled.
Here, we investigate the effects of soluble surfactants on foam flows at the bubble scale.

The physical problem and the numerical methods are presented in some detail in sections 2 and 3.
Section 4 contains a description and results from an extended parametric study. More specifically, we
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present an investigation on the effects of the adsorption depth on surfactant distribution and energy
dissipation during T1 events. A summary and perspectives are given in section 5.

2 Physical problem : A sheared 2D liquid foam

2.1 Geometric configuration

Figure 3 – Initial configuration : hemispherical bubbles in a liquid phase, confined between parallel
moving plates. Reproduced from [4].

We consider an initial hexagonal arrangement of 2D hemispherical bubbles attached to upper and lower
impermeable walls, with a distance of 2H√

3
between nearest bubble centers (Figure 3). The shear flow

is imposed by the velocity ±U at the walls. Periodic boundary conditions are imposed at the inlet and
outlet of the flow, such that, for example, a bubble exiting the domain to the right reenters at the left.

2.2 Flow dynamics
Fluids in both phases are assumed to be incompressible. Thus, the Navier-Stokes equations take the
form :

∇ · u = 0, (1)

ρ
(∂u
∂t

+ (u · ∇)u
)

= ∇ · σ (2)

where σ is the stress tensor for an incompressible, Newtonian fluid : σ = −pI + µ(∇u + (∇u)T ).
Equations 1 and 2 govern the flow in each phase, i, with respective densities and viscosities, ρi and µi.
At the walls, we assume a no-slip condition.

At the interfaces between the two phases, there is a dynamic boundary condition imposed by the stresses
at the interfaces :

[σ · n] = −γCn−∇sγ. (3)

Here, the brackets denote [x] = (xliq−xgas), and n is the unit normal vector at interfaces, which points
outwards from the gas to the liquid (Figure 4). γ is the local surface tension, C = −∇ · n is the local
interface curvature, and∇s = Is ·∇ is the gradient along the interface. The left hand side of equation 3
represents the total jump in traction across the interface. The normal component of this jump,−γCn, is
the contribution from the Young-Laplace equation, which gives the force balance between the pressure
jump at the interface and the surface tension. The tangential component of the jump in traction, ∇sγ,
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Figure 4 – Shearing flow regime. Reproduced from [4].

are the Marangoni forces due to variations in surface tension along the interfaces. We will see in the next
section how surface tension varies in the interface with changes in local surfactant concentration.

2.3 Surfactant transport and surface tension
The surfactant concentrations in the liquid phase and at the interface are initially uniformly distributed,
and are transported by the flow when the plates are set into motion.

Both within the liquid phase and at the interface, surfactants are transported by advection and diffusion
mechanisms. In the liquid phase, transport of surfactant concentration, F , is described by :

∂F

∂t
+∇ · (Fu) = DF∇2F, (4)

where F is the amount of surfactants per unit volume, andDF is the coefficient of diffusion in the liquid.
Transport of surfactant concentration along the interface, f , is :

∂f

∂t
+∇s · (uf) = Df∇2

sf + j (5)

where f is the amount of surfactants per unit area,Df is the coefficient of diffusion at the interface, and
∇s is the gradient along the interface. Equation 5 involves a source term j, arising from the fact that
surfactant is simultaneously exchanged between the interface and nearby fluid : j = −DF∇F · n. The
attachment and detachment of surfactant molecules to and from the interface are called adsorption and
desorption, respectively. The source term is [5] :

j(f, F ) = raFs(f∞ − f)− rdf (6)

Here ra and rd are adsorption and desorption rate coefficients, f∞ is the saturated interface concentra-
tion, and Fs is the concentration in the liquid phase near the interface.

There is no surfactant flux across the upper and lower plates. So, the boundary condition for liquid bulk
concentration transport at the walls is :

npl · ∇F = 0, (7)

where npl is the unit normal vector to the wall pointing into the fluid (Figure 4). For interface concen-
tration transport at the walls, the no-flux boundary condition is :
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t · ∇f = 0, (8)

where t is the unit tangent vector to the interface at the wall.

Finally, a closure relation is required for the local surface tension at interfaces, which varies with local
surfactant concentration. This is derived from the Langmuir adsorption model, and appears as [5] :

γ(f) = γ0

[
1 +

RTf∞
γ0

ln

(
1− f

f∞

)]
, (9)

where R, T , and γ0 are respectively the ideal gas constant, temperature (constant), and surface tension
for interfaces with no surfactant (f = 0).

During T1 events, the system behavior is the result of the coupled problems of fluid flow, interface
evolution and surfactant transport. The fluid motion is governed by the Navier-Stokes equations (1,2)
and the boundary conditions at liquid-gas interfaces (3). These boundary conditions involve the surfac-
tant concentration (9), which is in turn advected and diffused by the velocity field (4, 5). This feedback
between the flow and surfactant transport is a complex problem. In this study, we investigate the cho-
reography of these dynamics and the resultant rheological behavior by numerical simulation.

3 Numerical Method - Level Set

3.1 Level-set function
The governing equations given in the previous section are defined separately for each phase occupying
the physical domain. The solutions to these governing equations must also satisfy boundary conditions
at the interfaces, in particular, equation 3. The idea of interface-capturing numerical methods is to for-
mulate an expression of each governing equation that is valid over the entire domain. These typically
introduce a scalar field, defined in the entire system, from which the interface location can readily be
obtained. Of the various interface-capturing methods, we shall use the so-called level-set method. Define
a level-set function :

φ(x, t) =


d for x in the liquid phase (film),

0 for x at interface (film),

−d for x in gas phase (bubble).

(10)

Here, d is the distance between the material point, x, and the nearest interface. At each time step the
level set function is advected :

∂φ

∂t
+ u · ∇φ = 0, (11)

and interfaces are recaptured as the zero level set, φ(x, t) = 0. This allows interfaces to be tracked on
a fixed Cartesian grid. At each time step, a re-initialization procedure is used to ensure the level-set
function remains a signed distance function. The unit normal vector, to the interface can be expressed
in terms of the level-set function :

n =
∇φ
|∇φ|

(12)
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where derivatives are taken at φ = 0. The interface curvature, C = ∇ · n, can thus be obtained with
equation 12.

If we replace the two Navier-Stokes equations for each phase with a single one for the entire domain, the
density and viscosity expressions become position dependent. The level set function is used to determine
their local value :

ρ(φ) = ρliqHε(φ) + ρgas(1−Hε(φ)), (13)

µ(φ) = µliqHε(φ) + µgas(1−Hε(φ)), (14)

where Hε(φ) is a smoothed Heaviside function, with a smoothing parameter, ε :

Hε =


0 if φ < −ε,
1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
if |φ| ≤ ε,

1 if φ > ε.

(15)

3.2 Distribution form of governing equations
Now, the governing equations can be written in distribution form, in which the physical parameters at
every point in the domain are expressed in terms of Hε(φ) as in equations 13 and 14. The boundary
conditions at the interfaces Γ become source terms in the governing equations, via the Dirac delta func-
tion, δΓ = |∇(Hε)|. The distribution form of the Navier-Stokes equation is [5] :

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ ·

(
µ(∇u + (∇u)T )

)
+ γCnδΓ +∇s(γ)δΓ, (16)

and the continuity equation remains ∇ · u = 0. The Laplace and Marangoni stresses at the interfaces
appear in the last two terms on the right hand side of equation 16

Similarly, the distribution form of the surfactant transport equations 4 and 5 are [5] :

∂

∂t
(HεF ) +∇ · (HεFu) = DF∇ · (Hε∇F )− δΓj, (17)

∂

∂t
(fδΓ) +∇ · (fδΓu) = Df∇ · (δΓ∇f) + δΓj. (18)

F and f are continuous functions of position throughout the domain, with source term, δΓj, corres-
ponding to the boundary condition at interfaces. At the walls, the boundary conditions listed previously
remain unchanged (eq.s 7, 8). This system is simulated numerically using a two-phase flow level-set
solver extended by Titta et al. to include surfactant dynamics [6].

3.3 Parametric study
A set of dimensionless parameters characterizing different aspects of the dynamical system can be ex-
tracted from the non-dimensionalized governing equations [4]. Here, we briefly discuss parameters that
are pertinent to our current investigations of the coupled dynamics of fluid flow, interface evolution, and
surfactant transport :
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— Re ≡ ρlHU
µl

Reynolds number is a measure of the relative influence of inertial and viscous
forces in the flow. H and U are characteristic values of length and shear velocity of the flow,
respectively. Re = 1.

— Caeq ≡ µlU
γe

Capillary number is the ratio of viscous forces to surface tension. It is defined
for some equilibrium interfacial concentration, fe, through the Langmuir equation of state (eq.
9). The capillary number is fixed at some small value (Caeq = 0.1).

— Pe ≡ UH
D Péclet number is a ratio of the strengths of advective and diffusive mechanisms

of surfactant transport. This parameter intervenes in the surfactant transport equations, and in-
fluences homogeneity of surfactant distribution. It depends on the local diffusion coefficient,D,
and so is defined separately in the liquid bulk and at the interface (PeF and Pef ).

— Bi ≡ raH
U Biot number is a ratio of desorption and advection timescales. rd = ra for this

study. So, the Biot number is an index of the relative rates of deformation and surfactant exchange
in the interfaces.

— h ≡ fe
HFe

Adsorption depth is a ratio of the surfactant concentration at the interface and in
the bulk. This value is a factor of the source term in the dimensionless concentration transport
equation for the liquid phase. It may be a measure of availability for exchange of surfactant in
the neighborhood of interfaces.

The influences of capillary number, Péclet number, andBiot number on this system have been extensively
studied, fixing h = 1 [4]. Results of investigations of the effects of the adsorption depth are presented
in the following section.

4 Results
The adsorption depth, defined as : h = fe

HFe
, appears as a factor in the source term for the bulk transport

equation, (4), in dimensionless form. It is a measure of the relative amount of surfactant at the interfaces
and in the liquid bulk at thermodynamic equilibrium. In the limit of large adsorption depth (h >> 1),
surfactants are effectively insoluble. Here, rather, we investigate effects of reduced adsorption depths
(1 > h > 0.01) in different Péclet regimes (Pe = 1, 100) ; first on surfactant distribution in the fluid,
and subsequently on the mechanical response to steady wall-imposed shear. For all results presented be-
low, we consider equal bulk and surface Péclet numbers (PeF = Pef ), and the remaining dimensionless
numbers are fixed at : Re = 1, Ca = 0.1, Bi = 10.

4.1 Surfactant distribution
We present here the influence of adsorption depth on the distribution of surfactant concentration during
a steady, wall-imposed shear. We first consider Pe = 100, where diffusion of surfactants is weak both in
the bulk and at the surface. Before the flow starts, surfactant concentration is homogeneously distributed,
both in the liquid and its surface, and at thermodynamic equilibrium (Fe = fe = 1). After the walls
are set into motion, bubbles become stretched in film regions where interfaces slip past each other, and
are compressed near Plateau borders where opposite interfaces move either towards or away from each
other. Figure 5 shows the liquid bulk concnetration of surfactants of bubble assemblies during such
T1 rearrangements. Simultaneous snapshots are shown for two simulations with h = 1 and h = 0.01

in figures 5(a) and 5(b), respectively. In both cases, the liquid is depleted by adsorption onto nearby
stretched interfaces, and excess concentrations are expelled by desorption into the liquid where interfaces
are compressed. Note that the colorbar range for h = 0.01 corresponds approximately one fifth that of
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the colorbar for h = 1, as indicated by the brackets in Figure 5(a). Significantly more inhomogeneous
concentration distributions are observed for h = 1 than for h = 0.01.

(a) h = 1 (b) h = 0.01

Figure 5 – Bulk concentration, F , in liquid bulk during T1 event. Top and bottom bubbles, in white,
are moving to the right and left, respectively. (At equilibrium, Fe = 1.)

(a) h = 1 (b) h = 0.01

Figure 6 – Surface concentration, f , along the interface of bottom bubble. Inset : color maps for f . (At
equilbrium, fe = 1.)

The same dependence of surfactant distribution on adsorption depth is observed at interfaces. Surfactant
concentration along the lower bubble surface is shown as a function of curvilinear coordinate, s, in
Figures 6(a) and 6(b) for adsorption depths of h = 1 and h = 0.01. The curvilinear coordinate is
oriented by the right hand rule with respect to the interior of the bubbles (Figure 4). We see stronger
concentration gradients associated with the larger adsorption depth, and vice-versa (Figures 6(a) and
6(b)). Stronger concentration gradients also indicate stronger surface tension gradients, and therefore
stronger Marangoni forces at the interface. At the interface scale, reduced adsorption depths tend to
homogenize the surfactant distribution.

4.2 Energy balance
Power is injected to the fluid through work done by the walls as they maintain a steady shear. To-
tal reaction forces at the walls can be computed as the sum of the capillary forces at contact lines,
γwallnzsgn(nx), and the viscous drag forces from the gas and liquid,

∫
wall µg,l (∂ux/∂z) dx. From this,

the total injected power required is obtained for steady wall shear as : Pinj = FtotU . The total rate of
viscous dissipation in the bulk is obtained by integration over the entire domain of the local viscous dis-
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sipation rate of mechanical energy, which is derived as ∇u :
[
µ
(
∇u + (∇u)T

)]
. From this, injected

power can be compared to the viscous dissipation rate to infer how work is being done at the interfaces.

Figures 7(a) and 7(b) show the time evolution of the total injected power and integrated viscous dissipa-
tion rates for h = 1 and h = 0.01. This data corresponds to surfactant distributions shown previously,
with Pe = 100. We have observed in all of our numerical experiments that both injected power and
viscous dissipation decrease with decreased adsorption depth (figure 8(a)). The dotted lines show time
averaged values of injected power, 〈Pinj〉, and integrated viscous dissipation rate, 〈Dv〉, in blue and
yellow, respectively. Angled brackets denote a time average. Note that the injected power exceeds the
total viscous dissipation rate. We see that the power delivered to the plates is not entirely dissipated by
the bulk viscosity : 〈Pinj〉 > 〈Dv〉. It was also found in the work of Titta et. al that part of the energy
supplied by the moving plates must do work at the interfaces, and is associated with an effective surface
dissipation, noted : 〈Ds〉 ≡ 〈Pinj〉 − 〈Dv〉[4].

(a) h = 1 (b) h = 0.01

Figure 7 – Evolution of total injected power and viscous dissipation rates integrated over the fluid
volume during steady wall-imposed shear. (Pe = 100, Bi = 10, Ca = 0.1)

(a) 〈Pinj〉,〈Dv〉 (b) 〈Ds〉/〈Pinj〉

Figure 8 – Variation of injected power and dissipation rates with adsorption depth for diffusive and
convective surfactant transport regimes. (Bi = 10, Ca = 0.1)

Figure 8(b) shows the contribution of effective surface dissipation to average injected power as a function
of adsorption depth. The contribution of an effective surface dissipation is significant, ranging from
about 16% to 30%. However, 〈Ds〉/〈Pinj〉 is a decreasing function of h for Pe = 100 and an increasing
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function of h for Pe = 1. There appears to be some coupled effect of adsorption depth and Péclet
number on this effective surface dissipation.

5 Conclusions
We presented the level-set method for simulating T1 rearrangements of surfactant-laden 2D bubbles,
and extended a parametric study initiated by Titta et al. to include the effects of the adsorption depth
on the system dynamics. We found that, as the adsorption depth is decreased, surfactants tend to be
more homogeneously distributed in the bulk and at the surface, and that the injected power required for
maintaining a steady shear is reduced. We also found that there is a coupled effect of the Péclet number
and the adsorption depth on the contribution of interfaces to energy dissipation in the fluid. This observed
surface dissipation does not arise from an intrinsic surface viscosity. Rather, surface dissipation must
be the result of a viscoelastic behavior of surfactant-laden interfaces arising from surfactant exchanges
between the liquid bulk and its surface.

The global aim of this work is to shed light on shear rheology of larger bubble assemblies, and to even-
tually scale all the way to the foam level. First steps in this direction include :

— addition of intrinsic interfacial viscosity effects directly into the Navier-Stokes equations as
source term. The viscous contribution to the interfacial forces can be rewritten in terms of an
effective surface tension : γeff = γ + (Ks + µs)(∇s · u), whereKs and µs are respectively the
dilational and shear interfacial viscosities.

— replacement of the solid plates (which are impermeable to surfactants) with some quasi-periodic
boundary conditions to simulate the motion in an infinite bubble sheet

— extending the geometry to 3D bubbles
— simulation of drier systems - In current simulations, we consider foams with a 30% liquid volume

fraction, which is roughly an order of magnitude greater than what is found in typical foams. At
low liquid volume fraction, numerical diffusion of interfaces induce spurious events of bubble
coalescence. We will attempt to implement multiple level-set functions to avoid these numerical
(unphysical) coalescence events, and model drier bubble assemblies.

These objectives are part of the long term plans to develop more physically realistic simulations of T1
processes, and to obtain accurate rheological models for liquid foams.
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