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Abstract :

In this paper, two classes of numerical integrators are introduced and compared : Lie group methods,
presented via the particular case of Runge-Kutta Munthe-Kaas integrators ; and variational methods, in
which natural charts integrators and Galerkin methods are examined. Considering the case of a confi-
guration manifold with a Lie group action, both classes of methods are studied in terms of configuration
space preservation and symplectic/energy behaviour. As an example, we apply those formulations on
the rigid body problem.

Mots clefs : Geometric integrators, Structure Preserving numerical methods,
Variational methods.

1 Introduction
In this paper, two classes of numerical integrators preserving the Lie group structure of the system they
are applied on are reviewed and compared, namely Lie group methods and variational integrators. The
first will be approached via the example of the Runge-KuttaMunthe-Kaas class of integrators [9, 10, 11],
and the second via the formalism introduced by Marsden et al. [7] We propose a numerical experiment
for both types of designs on the rigid body problem in order to compare the results of simulations.

The setting of variational mechanics is central to the approach of this review, and is therefore summarized
here. Let a physical system be represented by a configurationmanifoldQ and a LagrangianL : TQ→ R,
the action map is defined as the time integral of the Lagrangian along a path q

A(q) =

∫ T

0
L(q(t), q̇(t))dt.

The first variation of the action map for an arbitrary path variation δq leads to the expression

dA(q)δq =

∫ T

0

(
∂ L

∂q
− d

dt

∂ L

∂q̇

)
δqdt+

[
∂ L

∂q̇
δq

]T
0

.

The Hamilton principle states that solutions q of the problems are critical points of the action map where
q is fixed at the endpoints. Hence, such a path q must cancel the action variation for arbitrary variations
δq and where δq(0) = δq(T ) = 0, yielding the Euler-Lagrange equations from the above expression

d

dt

∂ L

∂q̇
− ∂ L

∂q
= 0.
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Solutions of the Euler-Lagange equations can be shown to preserve the so called symplectic form, which
has important consequences in terms of energy behaviour. Preserving this feature in the discrete setting
is desirable to design energy preserving approximations.

In addition, we will place ourselves in the case of a homogeneous configuration space Q, in which a
solution is invariant by the action of an associated Lie group. It will be shown that both types of numerical
integrators preserve the underlying geometric structure of the system by computing approximations that
exhibit the same invariance properties than the solutions.

The difference between the two numerical integrators families comes from the discretization of the
Euler-Lagrange equations into discrete counterparts. They can be summed up by the following non
commutating diagram.

Lagrangian Discrete Lagrangian

E-L equations Discrete E-L equations

Discretization

Hamilton principle

Discretization

Hamilton principle

Runge-Kutta Munthe-Kaas methods provide a direct discretization of the Euler-Lagrange equations en-
suring that discrete solutions stay on the configurationmanifold. In that setting, well known and powerful
tools (i.e. Runge-Kutta, Butcher series) can be applied to equations expressed on the Lie algebra to de-
sign higher order methods as well as to determine their numerical convergence. However in this case
no particular property of symplecticity or energy preservation is obtained without further constraints.
Alternatively, variational methods rely on providing an approximate Lagrangian and applying a discrete
variational principle. In that case, the numerical solutions preserve an approximate symplectic form and
shows good long time energy behaviour. However, beyond these helpful intrinsic invariance property
some drawbacks may appears in the practical applications : it is difficult to define high order methods,
estimating the numerical error is usually non trivial, and the constructedmethod are often implicit, which
may increase the computational cost.

Section 2 will review the basics of the Runge-KuttaMunthe-Kaas class of methods as well as an example
of numerical integrator based on the classical RK4 method. Then the general discrete variational ap-
proach is layed out in section 3 along with examples of low and high order integrators, and the case of
variational integration when the configuration space is a Lie group is examined in section 4, along with
formulations for simple natural charts and Galerkin numerical integrators. We present a comparison of a
Runge-Kutta Munthe-Kaas method with a variational integrator based on natural charts of the Lie group
in section 5, where it is applied on the rigid body problem.

2 Runge-Kutta Munthe-Kaas methods
The Runge-Kutta Munthe-Kaas methods (RKMK), presented in a series of articles [9, 10, 11], are
examples of Lie group methods. They can be used for a given initial value problem

Ẏ = A(t, Y )Y, Y (0) = Y0 ∈M (1)

where Y is an element of a homogeneous spaceM on which a Lie group G acts. For a homogeneous
space Y = gY0 which means that any point of the manifold can be attained using a element g ∈ G from
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a fix point Y0.

After presenting the fundations of Runge-Kutta Munthe-Kaas methods (2.1), we present the details of
the RKMK4 integrator (2.2). An implementation of this integrator is applied on section 5 on the rigid
body problem.

2.1 Principles of Runge-Kutta Munthe-Kaas methods
The idea is to use the exponential map, exp : g → G, to guess a solution of (1) on the form Y (t) =

g(t)Y0 = exp(Ω(t))Y0. Introducing the right group action Rg : G → G and its differential TRg, the
computation of the time derivative

Ẏ = ġY0 = ġg−1gY0 = ġg−1Y = TRg−1(ġ)Y = TRg−1

(
T exp(Ω̇)

)
Y,

shows clearly that equation (1) may be written as Ẏ = dR exp(Ω̇)Y = AY , as soon as the right triviali-
zed derivative of the exponential map is defined by dR exp = TRg−1 ◦ T exp. Since dR exp : g→ g, it
means that A(t, Y ) = dR exp(Ω̇) belongs to the Lie algebra g. Inverting dR exp, a differential equation
on the variable Ω ∈ g is then obtained

Ω̇ = dR exp−1 (A(t, Y (t))) , (2)

for which, we take Ω(0) = 0 to ensure that Y (0) = Y0. The solution Ω(t) of this equation is then finally
used to compute Y (t) via the exponential map. Doing so ensures that the structure of the Lie group is
preserved — namely that the solution lies on G.

The application dR exp is invertible for all Ω such that ‖Ω‖ < π, and its inverse can be expressed as the
series dR exp−1

Ω =
∑∞

k=0(Bk/k!) adkΩ where (Bk)k≥0 are the Bernouilli numbers. We finally get for Ω

the initial value problem

Ω̇(t) = A (t, exp (Ω(t))Y0) +
∞∑
k=1

Bk
k!

adkΩ (A (t, exp (Ω(t))Y0)) , Ω(0) = 0. (3)

In the general case, equation (3) cannot be solved analytically, so an approximation Ω̃ ≈ Ω(h) of Ω at
time h is computed by means of a classical Runge-Kutta method. The step Y0 7→ Y1 is then computed as
Y1 = exp(Ω̃)Y0 ≈ Y (h) where the order of the approximation depends on the order of the RK method.

We recall that an s stage RK method is specified by the set of coefficients aij , bi ∈ R and ci =
∑s

j=1 aij

where i, j ∈ {1, . . . , s}, and is given for an initial value problem ẏ = f(t, y), y(t0) = y0 and a time
step h ∈ R by

ki = f

t0 + cih, y0 + h
s∑
j=1

aijkj

 , i ∈ {1, . . . , s}

y1 = y0 + h
s∑
i=1

biki.

The infinite sum in (3) is not practical to work with. However, it can sometimes be replaced by an
analytical expression (for example when g = so(3) [2]), or by a low order polynomial while keeping the
order of the RK method [1]. Otherwise, the sum is often truncated up to an order q, the RKMKmethods
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featuring the fundamental property that if the RK method is order p and that the truncation order checks
q ≥ p− 2, then the RKMK method is order p [3].

The interest of RKMK methods over other Lie group methods such as Crouch-Grossman methods is
that the order of the Runge-Kutta method is readily preserved, whereas additional order conditions have
to be determined for Crouch-Grossman methods [13], adding a set of equations to the method.

2.2 The Runge-Kutta Munthe-Kaas method of order 4
The RKMK4, based on the order 4 classical RK4 method, is obtained by truncation of the sum (3) up
to the term of order q = 2, yielding

Ω̇ := f(t,Ω) = A(t, Y )− 1

2
adΩ (A(t, Y )) +

1

12
ad2

Ω (A(t, Y ))

where we wrote Y = exp(Ω)Yn. We recall that the classical RK4 method is described by the Butcher
table

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

allowing us to define the RKMK4 method

k1 = f(tn, 0), k2 = f(tn + h/2,
h

2
k1), k3 = f(tn + h/2,

h

2
k2), k4 = f(tn + h, h k3)

Ω̃ =
h

6
(k1 + 2 k2 + 2 k3 + k4)

where the step Yn 7→ Yn+1 is given by

Yn+1 = exp

(
h

6
(k1 + 2 k2 + 2 k3 + k4)

)
Yn.

RKMK methods are straightforward and preserve the configuration space constraints. Moreover they
can be designed to be explicit by taking an explicit RK method. However, as any Lie group method, they
do not by default guarantee the conservation of any other property of the modelled system which might
be desirable to preserve, such as symplecticity, energy, or momenta ; such a behaviour can be observed
in the numerical results presented in section 5 for non symplectic and non energy preserving discrete
solution of the rigid body problem obtained via an RKMK4 integrator. Nonetheless, another class of
methods, based on a discrete variational principle, have these features by design.

3 Variational methods
In this section we review the fundamentals of variational methods. Those are based on the Lagrangian
viewpoint of mechanics and allow for a number of properties, among which the symplectic energy and
momentum preservation. After a general review of discrete variational mechanics (3.1), we derive two
examples of methods : the midpoint variational method (3.2), and the high order Galerkin variational
integrator (3.3). This section serves as an introduction for section 4 where we present the case of Lie
group variational methods.
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3.1 Discrete variational mechanics
We review here the standard formulation of the discrete variational mechanics based on the discrete
Hamilton principle, as presented by Marsden and West in [8].

In order to downsize the continuous problem to a finite dimension discrete case, we only consider the
set of configurations qk := q(kh) ∈ Q where q is the exact solution, h ∈ R an arbitrary time step and
k ∈ {0, . . . , N} (for the sake of simplicity, we only consider the case of a constant time step h, but the
following can be generalized to the case of adaptative time steps). Variational methods will provide us
with a mean to estimate the configurations qk.

We recall from section (ref) that the exact solution q of the problem associated the LagrangianL : TQ→
R is given by the Hamilton principle as the extremum of the action map A(q) =

∫ T
0 L(q(t), q̇(t))dt.

This integral can be split as a sum over k, taking the expression

A(q) =
N−1∑
k=0

∫ tk+1

tk

L(q(t), q̇(t))dt.

where tk := kh. In order to rephrase the problem in terms of qk only we define the exact discrete
Lagrangian LEd Q ×Q → R as the extremum of the Lagrangian integral over [tk, tk+1] with boundary
conditions q(tk) = qk and q(tk+1) = qk+1. In other words, the exact discrete Lagrangian is equal to the
action restricted to the interval [tk, tk+1]. We write

LEd (qk, qk+1) := ext
q̃:[tk,tk+1]→Q

q̃(tk)=qk, q̃(tk+1)=qk+1

∫ tk+1

tk

L(q̃(t), ˙̃q(t))dt =

∫ tk+1

tk

L(q(t), q̇(t))dt

Let the discrete path qd denote the set of configurations qd := {qk}Nk=0, the action map can be rewritten
as a function of qd

AEd (qd) =
N−1∑
k=0

LEd (qk, qk+1) = A(q)

where the action mapAEd only depends explicitely on qd and the exact solution q is given implicitely by
the exact discrete Lagrangian.

Computing LEd (qk, qk+1) would require knowing the exact solution q between tk and tk+1, which we
don’t have access to. For this reason, we introduce a discrete Lagrangian Ld : Q × Q → R as an
approximation of LEd , that is

Ld(qk, qk+1) ≈ LEd (qk, qk+1).

This discrete Lagrangian is to be thought of as the result of a local optimisation problem of finiding
an approximate path solving a simplified variational problem for given boundary conditions. Defining
a discrete Lagrangian is a two step process : taking a subset of possible solutions for q̃, and providing
a quadrature for the action integral restricted to [tk, tk+1]. There is no unique definition for Ld, and
the choice for its definition will result in different numerical methods. Concrete examples are given
in sections 3.2 and 3.3, where numerical integrators are derived from two different definitions for the
discrete Lagrangian.

Without any additional hypothesis on the discrete Lagrangian, a number of results can be proven for
methods deriving from the discrete variational principle regadless of a specific choice for Ld. We define
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the discrete action Ad as the sum over k of the discrete Lagrangian Ld, which expression is given for a
discrete path qd as

Ad(qd) :=
N−1∑
k=0

Ld(qk, qk+1).

Looking for conditions on qd to be the solution of the approximate variational problem, we compute the
variation of action for variations δqd := {δqk}Nk=0

dAd(qd) · δqd =
N−1∑
k=0

D1 Ld(qk, qk+1) · δqk +D2 Ld(qk, qk+1) · δqk+1

=
N−1∑
k=1

(D1 Ld(qk, qk+1) +D2 Ld(qk−1, qk)) · δqk

+ Θ+
Ld

(qN−1, qN ) · (δqN−1, δqN )−ΘLd(q0, q1) · (δq0, δq1)

where we define the two Lagrangian 1-forms

Θ+
Ld

(q0, q1) = D2 Ld(q0, q1) d q1 Θ−Ld(q0, q1) = −D1 Ld(q0, q1) d q0.

Applying the Hamilton principle to the restricted problems, that is taking arbitrary variations δqd with
vankishing endpoints δq0 and δqN , leads by independence of the variations {δqk}N−1

k=1 to the discrete
Euler-Lagrange equations (DEL) given for all k ∈ {1, . . . , N − 1} by

D1 Ld(qk, qk+1) +D2 Ld(qk−1, qk) = 0. (4)

Solving these equations for qk+1 knowing qk−1 and qk provide us with the step (qk−1, qk) 7→ (qk, qk+1)

defining the numerical method.

Symplecticity One important feature of the numerical method obtained by solving the DEL is that
they are symplectic. This is otained by showing that the solutions of the numerical method preserve the
discrete symplectic two-form ΩLd := d Θ+

Ld
= d Θ−Ld (see [8]). It is well known [6, 3] that discrete

paths obtained via symplectic integrators also preserve energy for an approximate Lagrangian system,
and thus display excellent long-time energy behaviour : the energy is approximately preserved and os-
cillates around the exact value. Symplecticity, and approximate energy preservation, is a design feature
of variational integrators.

3.2 Variational midpoint method
We present here an example of straightforward variational method, featured in [14]. This method is
build by approximating the path q by the linear interpolation between q0 and q1, and approximating the
Lagrangian integral by the midpoint rule

q̃(t) = q0 + t
q1 − q0

h

Ld(q0, q1) = hL
(
q̃(h/2), ˙̃q(h/2)

)
.
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This yields the discrete Lagrangian

Ld(q0, q1) = h L

(
q0 + q1

2
,
q1 − q0

h

)
.

The associated discrete Euler-Lagrange equations (4) are given for k ∈ {1, . . . , N} by

h

2

∂ L

∂q

(
qk− 1

2
, q̇k− 1

2

)
+
∂ L

∂q̇

(
qk− 1

2
, q̇k− 1

2

)
+
h

2

∂ L

∂q

(
qk+ 1

2
, q̇k+ 1

2

)
− ∂ L

∂q̇

(
qk+ 1

2
, q̇k+ 1

2

)
= 0 (5)

where qk+ 1
2

=
qk+qk+1

2 and q̇k+ 1
2

=
qk+1−qk

h . Those equations are generally implicit for qk+1 and have
to be solved numerically.

3.3 Galerkin variational methods
The construction of Galerkin variational integrators is based on expressing simplified solutions with a set
of polynomials and approximating the Lagrangian integrals with quadrature rules. They allow the design
of high order schemes that are computationally effective while still retaining the preservation properties.
Those methods were introduced in [8] and have since been further developed ; see for example [12, 5].

Solutions on a time interval [tk, tk+1] are approximated as polynomials of degree s for an arbitrary
s ∈ N, that is between each pair of boudary conditions (qk, qk+1) the discrete path is interpolated as a
polynomial. As shown in figure 1, interpolating solutions on [tk, tk+1] are defined uniquely by specifying
s + 1 control points 0 =α0 < · · ·<αs = 1 and corresponding configurations

(
q0, q1, . . . , qs−1, qs

)
=

{qν}sν=0 such that q0 = qk and qs = qk+1. From now on, we focus on a fixed interval [tk, tk+1] and
boundary conditions (qk, qk+1) ; without loss of generality we set tk = 0 and tk+1 = h. We define
qd : [0, h] → Q the interpolating polynomial on this interval depending on the configurations {qν}
such that for all ν ∈ {0, . . . , s} we have qd(ανh; {qµ}) = qν . Those polynomials admit a unique
decomposition on the basis of degree s Lagrange polynomials φν : [0, 1]→ R defined for ν by

φν(t) =
∏

0≤i≤s, i 6=ν

t− αi
αν − αi

.

The path qd and its derivative are expressed in that basis by

qd(t; {qν}) =
s∑

ν=0

qνφν(t/h), q̇d(t; {qν}) =
1

h

s∑
ν=0

qν φ̇ν(t/h). (6)

With the set of paths well defined, one now needs to provide an approximation for the Lagrangian integral
restricted to the set of interpolating polynomials qd

ext
qd:[0,h]→Q

qd(0)=qk, qd(h)=qk+1

∫ h

0
L(qd, q̇d)dt. (7)

Extremalizing this integral on the set of interpolating paths qd with constraints qd(0) = qk and qd(h) =

qk+1 is exactly extremalizing it on the set of configurations {qν}sν=0 with constraints q0 = qk and
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tt0 t1 tk tk+1 tN−1 tN

Q
q0

q1 qk
qk+1 qN−1

qN

tk

α0h=0

tk+1

αsh=hα1h α2h αs−2h αs−1h

. . .

qk=q
0 q1

q2

qs−1

qs−1

qs=qk+1

Figure 1 – A schematic of the curve interpolation.

qs = qk+1. This is why (7) can be equivalently written

ext
{qν}s−1

ν=1∈Q
q0=qk, q

s=qk+1

∫ h

0
L(qd(t; {qν}), q̇d(t; {qν}))dt.

We now provide an approximation for the integral. Let (ci, wi)1≤i≤r be a quadrature of the interval [0, 1]

with quadrature points ci associated to the weights wi ; classical examples of widely used quadratures
are given by Gauss-Legendre or Gauss-Lebatto. We refer to [12] for a discussion on the choices of
quadratures and the order of the resulting methods. We define the local discrete action Ãd : Qs → R as
the quadrature associated to (ci, wi) of the integral

∫ h
0 L(qd, q̇d)dt, that is

Ãd({qν}sν=0) := h

r∑
i=1

wi L (cih; {qν})

where we used the shortcut notation L(cih; {qν}) = L(qd(cih; {qν}), q̇d(cih; {qν})). To find the extre-
mal of the local action Ãd, we compute the variations of action with respect to arbitrary variations δqν

with constraint δq0 = δqs = 0,

d Ãd({qµ})({δqν}) =
s−1∑
ν=1

h
r∑
i=1

wi d L(cih; {qµ})(δqν)

=

s−1∑
ν=1

h

r∑
i=1

wi

(
∂ L

∂q
(cih; {qµ}) d qd(δq

ν) +
∂ L

∂q̇
(cih; {qµ}) d q̇d(δq

ν)

)

=

s−1∑
ν=1

h

r∑
i=1

wi

(
φν(ci)

∂ L

∂q
(cih; {qµ}) +

1

h
φ̇ν(ci)

∂ L

∂q̇
(cih; {qµ})

)
δqν .
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where in line 2 we computed the differential of the path qd and of its time derivative q̇d along the varia-
tions δqν as

d qd(δq
ν) =

∂qd
∂qµ

d qµ(δqν) +
∂qd
∂t

d t(δqν) = δνµφµδq
ν ,

d q̇d(δq
ν) = δνµ

1

h
φ̇µδq

ν .

Here, since the mesh is fixed, variations δqν are taken along the fibre Q, hence d t(δqν) = 0.

The variations δqν being independent for 1 ≤ ν ≤ s− 1, taking δÃd = 0 yields for ν ∈ {1, . . . , s− 1}

h

r∑
i=1

wi

(
φν(ci)

∂ L

∂q
(cih; {qµ}) +

1

h
φ̇ν(ci)

∂ L

∂q̇
(cih; {qµ})

)
= 0. (8)

This allows us to define the discrete Lagrangian Ld : Q×Q→ R on a pair (qk, qk+1) as the extremum
of the local action Ãd evaluated on {qν}sν=0 with boudary conditions q0 = qk and qs = qk+1

Ld(qk, qk+1) = ext
{qνk}

s−1
ν=1∈Q

q0=qk, q
s=qk+1

Ãd({qν}sν=0) = ext
{qνk}

s−1
ν=1∈Q

q0=qk, q
s=qk+1

h

r∑
i=1

wi L(cih; {qν}, h),

or equivalently to write

Ld(qk, qk+1) = h

r∑
i=1

wi L(cih; {q̃k}), (9)

where now on we denote q̃k = {q̃ν}sν=0 the set of extremalizing configurations where q̃0 = qk, q̃s =

qk+1 and q̃k is solution of equations (8) for ν ∈ {1, . . . , N − 1}.
We recall from section 3.1 that Ld satisfies the DEL equation (4) for k ∈ {1, . . . , N−1}. The derivatives
D1 Ld(qk, qk+1) = ∂

∂qk
Ld(qk, qk+1) and D2 Ld(qk, qk+1) = ∂

∂qk+1
Ld(qk, qk+1) are obtained from

expression (9) as

D1 Ld(qk, qk+1) =
∂

∂q0
Ld(qk, qk+1) = h

r∑
i=1

wi

(
φ0(ci)

∂ L

∂q
(cih; q̃k) +

1

h
φ̇0(ci)

∂ L

∂q̇
(cih; q̃k)

)

D2 Ld(qk, qk+1) =
∂

∂qs
Ld(qk, qk+1) = h

r∑
i=1

wi

(
φs(ci)

∂ L

∂q
(cih; q̃k) +

1

h
φ̇s(ci)

∂ L

∂q̇
(cih; q̃k)

)

since qk = q0 and qk+1 = qs. This yields the DEL equation for k ∈ {1, . . . , N − 1}

h
r∑
i=1

wi

(
φ0(ci)

∂ L

∂q
(cih; q̃k) +

1

h
φ̇0(ci)

∂ L

∂q̇
(cih; q̃k)

)

+ h
r∑
i=1

wi

(
φs(ci)

∂ L

∂q
(cih; q̃k−1) +

1

h
φ̇s(ci)

∂ L

∂q̇
(cih; q̃k−1)

)
= 0. (10)

Finally, a step (qk−1, qk) 7→ (qk, qk+1) of the high order Galerkin variational method is obtained by
setting q0 = qk and solving the s − 1 equations (8) together with the DEL equation (10) for the s
unknown variables {qν}sν=1 and updating qk+1 = qs, the set of s configurations q̃k−1 being known from
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the previous step computation. In the general case, the equations have to be solved implicitly for the s
variables using a numerical solver to determine a root (q1

k, . . . , q
s−1
k , qsk) of the set of s−1 equations (8)

and (10).

4 Lie group variational methods
This section follows the development in section 3 where we focused on discrete variational mechanics
in a general setting. We now consider the case where the configuration space is a Lie group G acting
on itself, and a left G-invariant Lagrangian L. That is to say ∀g̃ ∈ G, L(Lg̃g, TLg̃ ġ) = L(g, ġ) where
Lg : G→ G is the group left action. In particular, for the choice g̃ = g−1, we have

L(g, ġ) = L(Lg−1g, TLg−1 ġ) = L(eG, TLg−1 ġ).

This allows for the definition of a reduced problem, expressed by means of a reduced Lagrangian ` :

g→ R now defined on the Lie algebra g for a path g as

`(ξ) := L(eG, ξ)

where ξ = TLg−1 ġ. In this case the Hamilton principle leads to the Euler-Poincaré equations. The
discrete counterparts provide numerical methods preserving both the symplectic structure and the G
invariance. Two methods are developed in this new setting, and applied in section 5 on the rigid body
problem.

4.1 Discrete variational mechanics on Lie groups
LetL : TQ→ R be a left invariant Lagrangian, we can always design a left invariant discrete Lagrangian
Ld : Q × Q → R [5]. This means that for any pair gk, gk+1 ∈ G and g̃ ∈ G, Ld(g̃gk, g̃gk+1) =

Ld(gk, gk+1). Let us assume that our discrete Lagrangian Ld has such a property. Following [7], the
discrete reduced Lagrangian `d : G → R is defined by choosing g̃ = g−1

k as the left group action on
G×G and composing it with the discrete Lagrangian, defining for any gk, gk+1

Ld(gk, gk+1) = Ld(eG, g
−1
k gk+1) = `d(g

−1
k gk+1).

The associated reduced discrete action is obtained as

Ad(gd) :=
N−1∑
k=0

`d(fk,k+1)

where we defined fk,k+1 := g−1
k gk+1 ∈ G.

As in section 3, the variation of the discrete reduced action is computed on an arbitrary path gd in order
to look for solutions of the problem formulated by the Lagrangian by applying a Hamilton principle.
The variations δfk,k+1 first need to be computed :

δfk,k+1 = −g−1
k δgkg

−1
k gk+1 + g−1

k δgk+1 = TRfk,k+1
(−g−1

k δgk + Adfk,k+1
g−1
k+1δgk+1)

= TRfk,k+1
(−ζk + Adfk,k+1

ζk+1)

where ζk := g−1
k δgk and Adg : g → g is the adjoint map in g ∈ G. Taking a path with vanishing
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variation at endpoints δg0 = δgN = 0, we obtain ζ0 = ζN = 0, and we compute the reuslting variation
of action

dAd(gd)δgd =

N−1∑
k=0

`′d(fk,k+1)δfk,k+1 =

N−1∑
k=0

`′d(fk,k+1)TRfk,k+1
(−ζk + Adfk,k+1

ζk+1)

=
N−1∑
k=1

(
`′d(fk−1,k)TRfk−1,k

Adfk−1,k
−`′d(fk,k+1)TRfk,k+1

)
(ζk).

The Hamilton principle applied for arbitrary independent ζk for k ∈ {1, . . . , N − 1} yields the discrete
Euler-Poincaré equations (DEP) given for all k ∈ {1, . . . , N − 1} by

`′d(fk−1,k)TRfk−1,k
Adfk−1,k

−`′d(fk,k+1)TRfk,k+1
= 0. (11)

Solving the DEP equation (11) gives the increments {fk,k+1}N−1
k=0 , from which the path gd is obtained

via the initial value g0 and the reconstruction step gk+1 = gkfk,k+1. Since for all k, fk,k+1 ∈ G and
g0 ∈ G, it is readily checked that gk ∈ G, i.e. the discrete path remains on the Lie group. Moreover, all
the properties of general variational integrators such as symplectic behaviour still hold in this setting.

4.2 Natural chart integrator
We propose here a straightforward construction for a Lie variational integrator. Following [7], we use a
natural chart τ of the group G to approximate the path g.

Let τ : g → G be a local diffeomorphism containing an open neighborhood of the identity and such
that τ(0g) = eG ; typical examples for τ are given by the exponential map and the Cayley map (ref). Let
gk, gk+1 ∈ G be two group elements, we define the associated Lie algebra element ξk,k+1 ∈ g by

gk+1 = gkτ(ξk,k+1),

in other words ξk,k+1 is the direction taken to transport gk to gk+1 along the diffeomorphism τ . We
recall from section 4.1 that fk,k+1 = g−1

k gk+1, yielding the relation

ξk,k+1 = τ−1(fk,k+1).

Let us now consider a time interval [tk, tk+1] and a given pair of configurations (gk, gk+1). We approxi-
mate the exact path g on this interval by the interpolating curve gd : [0, h]→ G, gd(t) = gkτ(tξk,k+1/h).
This interpolation is leftG-invariant, that is for any g̃ ∈ G, gd(t; g̃gk, g̃gk+1) = g̃gd(t; gk, gk+1). Indeed,
for g̃ ∈ G,

gd(t; g̃gk, g̃gk+1) = g̃gkτ
(
tτ−1

(
(g̃gk)

−1(g̃gk+1)
)
/h
)

= g̃gkτ
(
tτ−1

(
g−1
k g̃−1g̃gk+1

)
/h
)

= g̃gkτ
(
tτ−1

(
g−1
k gk+1

)
/h
)

= g̃gd(t; gk, gk+1).

We use the shortcut notation gd(t) := gd(t; gk, gk+1) from now on.

Now that the set of discrete paths has been define, we choose the discrete Lagrangian Ld as the left
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rectangle rule quadrature of the Lagrangian integral
∫ h

0 L(gd(t), ġd(t))dt, namely

Ld(gk, gk+1) := hL(gd(0), ġd(0)).

This discrete Lagrangian is left G-invariant since, for any g̃ ∈ G,

Ld(g̃gk, g̃gk+1) = hL (gd(0; g̃gk, g̃gk+1), ġd(0; g̃gk, g̃gk+1))

= hL (g̃gd(0; gk, gk+1), g̃ġd(0; gk, gk+1))

= hL (gd(0; gk, gk+1), ġd(0; gk, gk+1))

= Ld(gk, gk+1)

where we used the G invariance of gd in line 1 and of L in line 2. This allows us to define a reduced
discrete lagrangian `d : G→ R as `d(g−1

k gk+1) := Ld(gk, gk+1). This can still be further simplified by
expressing it in terms of the reduced Lagrangian ` : g→ R. After noticing that g−1

d (t)ġd(t) = ξk,k+1/h,
we write

`d(g
−1
k gk+1) = Ld(gk, gk+1) = hL(gd(0), ġd(0))

= hL
(
(gd(0))−1gd(0), (gd(0))−1ġd(0)

)
= hL(eG, ξk,k+1/h) = h`(ξk,k+1/h)

= h`(τ−1(fk,k+1)/h)

where we used the G-invariance of L in the first line. The expression for the derivative of `d follows,
given by

`′d(fk,k+1) = `′
(
τ−1(fk,k+1)/h

)
Tfk,k+1

τ−1

= `′ (ξk,k+1/h)Tτ(ξk,k+1)τ
−1

from which we deduce the discrete Euler-Poincaré equations (11) expressed in this setting for any k ∈
{1, . . . , N − 1}

`′ (ξk−1,k/h) dR τ−1
ξk−1,k

Adτ(ξk−1,k)−`′ (ξk,k+1/h) dR τ−1
ξk,k+1

= 0 (12)

where we recall from section 2 the definition of the right trivialized derivative dR τ−1
ξ : g → g,

dR τ−1
ξ := Tτ(ξ)τ

−1TRτ(ξ).

An integrator for a choice of specific chart τ can be derived from equation (12) as follows. For a given
pair (gk−1, gk), the element ξk−1,k is computed as ξk−1,k = τ−1(g−1

k−1gk). The next algebra element
ξk,k+1 is determined as the solution of equation (12), where depending on the problem it might have
to be solved implicitly, with a Newton method for example. Finally, the position gk+1 is updated as
gk+1 = gkτ(ξk,k+1). A numerical application of such an integrator is given in section 5 on the rigid
body problem.

4.3 Galerkin variational integrators
We recall the construction of the Galerkin variational integrator in section 3.3. In order to adapt it to the
new setting of 4, it is necessary to make some adjustments in order to obtain a G invariant formulation.
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As done previously in section 3.3, we construct gd the interpolating curve of the exact path g on the
time interval [tk, tk+1] by setting s + 1 control points 0 = α0 < · · · < αs = 1 associated to the group
elements {gν}sν=0 ∈ G such that gd(ανh; {gµ}) = gν for every ν. In order to construct a G invariant
interpolation, we use the correspondence of the Lie groupG and its algebra g via a local diffeomorphism
τ : g→ G containing the identity and such that τ(0g) = eG. This allows the interpolating curve of the
solution gd to be identified with a path ξd on the Lie algebra, defined by the relation

gd(t; {gν}) = g0τ (ξd(t; {ξν}))

where we define the control points {ξν}sν=0 ∈ g by

ξν := ξd(ανh; {ξµ})

and hence are deduced from {gν} by the relation

ξν = τ−1((g0)−1gν).

As in section 3.3, we define the interpolating curve ξd : [0, h]→ g in the algebra as a degree s polynomial
expressed on the basis of Lagrange polynomials φν , yielding

ξ(t; {ξν}) =

s∑
ν=0

ξνφν

(
t

h

)
.

Its derivative ξ̇d = g−1
d ġd is computed as

ξ̇(t; {ξν}) =
1

h

s∑
ν=0

ξν φ̇ν

(
t

h

)
.

With this definition, we can check that gd isG invariant, i.e. for g̃ ∈ g, gd(t; {g̃gν}) = g̃gd(t; {gν}). Let
g̃ ∈ g, then

gd(t; {g̃gν}) = g̃g0τ

(
ξd

(
t;
{
τ−1

((
g̃g0
)−1

(g̃gν)
)}))

= g̃g0τ

(
ξd

(
t;
{
τ−1

(
(g0)−1g̃−1g̃gν

)}))
= g̃g0τ

(
ξd

(
t;
{
τ−1

(
(g0)−1gν

)}))
= g̃g0τ

(
ξd(t; {ξν})

)
= g̃gd(t; {gν}).

We define the discrete Lagrangian Ld in the same way we did in section 3.3. For a given quadrature
(ci, wi)1≤i≤r of the interval [0, 1] we define the local discrete action Ãd associated to the configurations
{gν}sν=0 as

Ãd({gν}sν=0) := h
r∑
i=1

wi L (cih; {gν})

where we used the shortcut notation L(cih; {gν}) := L(gd(cih; {gν}), ġd(cih; {gν})). This allows us
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to define the discrete Lagrangian Ld : G × G → R on a pair (gk, gk+1) as the extremum of the local
discrete action Ãd evaluated on {gν}sν=0 with g0 = gk and gs = gk+1

Ld(gk, gk+1) = ext
{gν}s−1

ν=1∈G
g0=gk, g

s=gk+1

h

r∑
i=1

wi L (cih; {gν})

Defining a reduced discrete Lagrangian requires Ld to be left G-invariant. We prove this by taking an
arbitrary g̃ ∈ g and computing

Ld(g̃gk, g̃gk+1) = ext
{gν}s−1

ν=1∈G
g0=g̃gk, g

s=g̃gk+1

h
r∑
i=1

wi L (gd(cih; {gν}, h), ġd(cih; {gν}, h))

= ext
{gν}s−1

ν=1∈G
g0=gk, g

s=gk+1

h
r∑
i=1

wi L (gd(cih; {g̃gν}, h), ġd(cih; {g̃gν}, h))

= ext
{gν}s−1

ν=1∈G
g0=gk, g

s=gk+1

h

r∑
i=1

wi L (g̃gd(cih; {gν}, h), g̃ġd(cih; {gν}, h))

= ext
{gν}s−1

ν=1∈G
g0=gk, g

s=gk+1

h

r∑
i=1

wi L (gd(cih; {gν}, h), ġd(cih; {gν}, h))

= Ld(gk, gk+1)

where we used the G invariance of gd in line 2 and of L in line 3.

In order to express the equations in terms of Lie algebra elements, we define the reduced discrete La-
grangian `d(g−1

k gk+1) := Ld(gk, gk+1) and we rewrite the action extremal by involving the reduced
Lagrangian `. After recalling fk,k+1 = g−1

k gk+1 and checking that ξ0 = τ−1((g0)−1g0) = 0g and
ξs = τ−1(g−1

k gk+1) = τ−1(fk,k+1), we compute

`d(fk,k+1) = ext
{gν}s−1

ν=1∈G
g0=gk, g

s=gk+1

h

r∑
i=1

wi L (gd(cih; {gν}, h), ġd(cih; {gν}, h))

= ext
{gν}s−1

ν=1∈G
g0=gk, g

s=gk+1

h
r∑
i=1

wi L
(
Lg−1

k
gd(cih), TLg−1

k
ġd(cih)

)

= ext
{ξν}s−1

ν=1∈g
ξ0=0, ξs=τ−1(fk,k+1)

h

r∑
i=1

wi L
(
τ(ξd(cih)), Tξd(cih)τ(ξ̇d(cih))

)

= ext
{ξν}s−1

ν=1∈g
ξ0=0, ξs=τ−1(fk,k+1)

h

r∑
i=1

wi L
(
Lτ(ξ(cih))−1τ(ξ(cih)), TLτ(ξ(cih))−1Tξd(cih)τ(ξ̇d(cih))

)

= ext
{ξν}s−1

ν=1∈g
ξ0=0, ξs=τ−1(fk,k+1)

h
r∑
i=1

wi L
(
e, TLτ(ξ(cih))−1TLτ(ξ(cih)) dL τξd(cih)(ξ̇d(cih))

)
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= ext
{ξν}s−1

ν=1∈g
ξ0=0, ξs=τ−1(fk,k+1)

h

r∑
i=1

wi L
(
eG,d

L τξd(cih)(ξ̇d(cih))
)

= ext
{ξν}s−1

ν=1∈g
ξ0=0, ξs=τ−1(fk,k+1)

h
r∑
i=1

wi`
(

dL τξd(cih)(ξ̇d(cih))
)

where we used the shortcut notation gd(t) = gd(t; {gν}, h) and ξd(t) = ξd(t; {ξν}, h), and where the
left trivialized derivative dL τξ : Tξg ≡ g→ g is defined by dL τξ = TLτ(ξ)−1 ◦d τξ : g→ Tτ(ξ)G→ g.
The left invariance of the Lagrangian L was used twice, in lines 1 and 3.

The discrete reduced Lagrangian `d verifies the DEP equation established in section 4.1

`′d(fk−1,k)TRfk−1,k
Adfk−1,k

−`′d(fk,k+1)TRfk,k+1
= 0 (13)

5 Numerical application : free rigid body dynamics
We apply the previously described methods on the free rigid body problem. Its relatively simple and
well know structure, well described in [7], makes it a common choice for numerical methods testing.
Examples of numerical discretizations of the rigid body problem include [3] and [2].

After presenting the rigid body formulation, we apply both RKMK4 and natural chart methods designed
in sections 2.2 and 4.2 respectively, and discussed the obtained discrete solutions. We refer to [4] for an
extensive discussion about the implementation of Lie Galerkin integrator and its numerical restults for
the rigid body dynamics.

5.1 Free rigid body dynamics
Let I be the constant inertia tensor, describing the geometry of the rigid body, without loss of generality
we assume it to be diagonal, that is expressed in the principal directions of the body. Let R(t) ∈ G =

SO(3) = {R ∈ GL3(R)/RRT = I, det(R) = 1} be the attitude matrix of the body at time t, the left
trivialized rotational speed ξ is given at time t by ξ(t) := R−1(t)Ṙ(t) ∈ g = so(3). In the absence of
external forces, the Lagrangian L : TG→ R is simply equal to the kinetic energy

L(R, Ṙ) =
1

2
tr
(
ṘTRIRT Ṙ

)
.

This Lagrangian is left invariant, since for any R̃ ∈ SO(3)

L(R̃R, R̃Ṙ) =
1

2
tr
(

(R̃Ṙ)T (R̃R)I(R̃R)T (R̃Ṙ)
)

=
1

2
tr
(
ṘT R̃T R̃RIRT R̃T R̃Ṙ

)
=

1

2
tr
(
ṘTRIRT Ṙ

)
= L(R, Ṙ),

allowing us to define the reduced Lagrangian ` : so(3)→ R as

`(ξ) =
1

2
tr
(
ξT Iξ

)
.
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The algebra so(3) = {ξ ∈ GL3(R)/ξT = −ξ} of skew-symmetric matrices can be identified with R3

via the hat map ·̂ : R3 → so(3) defined for ξ = (ξ1, ξ2, ξ3)T ∈ R3 by

ξ̂ =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


and for any ν ∈ R3 we have ξ̂ν = ξ ∧ ν. With this notation, the reduced Lagrangian can be rewritten
as ` : R3 → R3 where

`(ξ) = 1/2 〈Iξ, ξ〉 (14)

for all ξ ∈ R3. Applying the Hamilton principle yields the Euler-Poincaré equations for the rigid body

π̇ + ξ ∧ π = 0 (15)

where π := Iξ ∈ R3 ≡ so∗(3) is the angular momentum of the body.

5.2 RKMK4
Rewritten together with the initial condition π(0) = π0, equation (15) becomes

π̇ =

 0 π3
I3

−π2
I2

−π3
I3

0 π1
I1

π2
I2

−π1
I1

0

π, π(0) = π0 (16)

with π = (π1, π2, π3)T and I = diag(I1, I2, I3). This equation is of the form (1) whereM = so(3)∗ is
the homogeneous space and G = SO(3) is the acting Lie group. This means that for any t the angular
momentum π(t) has a constant norm, that is ‖π(t)‖ = ‖π0‖. By applying a Runge-Kutta Munthe-Kaas
method, we can ensure that this property is preserved by the approximate solution.

5.3 Natural chart integrator
In order to set up the method described in section 4.2, one need to provide the local diffeomorphism
τ : so(3) → SO(3). We chose to use the Cayley map cay for its simplicity of computation. For any
ξ ∈ so(3), the image cay(ξ) is defined by

cay(ξ) =

(
I − ξ

2

)−1(
I +

ξ

2

)
A computation (ref) gives dR cay−1

ξ : R3 → R3 in the matrix form for ξ ∈ so(3)

dR cay−1
ξ = I − ξ

2
+

ξξT

4
.

Since the map Adg : R3 → R3 is given for g ∈ SO(3) by Adg(ξ) = gξ where ξ ∈ R3, we get the
discrete Euler-Poincaré equation

ξTk,k+1I

(
I − ξk,k+1

2
+

ξk,k+1ξ
T
k,k+1

4

)
= ξTk−1,kI

(
I − ξk−1,k

2
+

ξk−1,kξ
T
k−1,k

4

)
τ(ξk−1,k)
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which has to be solved implicitly for ξk,k+1.

5.4 Numerical results
In the following, all the numerical applications have been performed for the conditions

π0 =
(

cos(π/3) 0 sin(π/3)
)T

, I =

2/3 0 0

0 1 0

0 0 2

 .

π1

π2

π3

π1

π2

π3

Figure 2 – Approximate angular momentum for RKMK4 (left) and natural chart (right) methods for
h = 0.9.
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Figure 3 – Relative energy error for h = 0.9.

As expected, we observe on figure 2 that both methods preserve the Lie group structure of the solutions.
This is illustrated by the fact that discrete paths for the angular momentum remain on the surface of
the ‖π0‖ radius sphere. That property is not ensured when applying direct discretization of the DEP
equations ; examples of discrete paths drifting away from the sphere for the rigid body problem can be
found in [3].

However, the two methods perform very differently in terms of symplecticity and consequentely energy
behaviour. The RKMK4 method generates numerical errors that result over the long term in energy
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dissipation. This is displayed on figure 2 by the drift of the solution towards orbits of lower energy level,
i.e closer to the vertical axis. On the contrary, the natural chart method remains on a closed path crossing
several orbits. Although the energy is not exactly preserved by this path, it never diverges over the long
run and remains in a bounded interval. This feature is clearly illustrated in figure 3 displaying the relative
energy error against time for both discrete paths.
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