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Résumé: 

 

Cet article présente une étude stochastique visant à prédire l’effet des incertitudes sur les fréquences 

naturelles et les fonctions de réponse en fréquence (FRF) d’un stator de moteur électrique avec 

quantification de la variabilité expérimentale. Des mesures expérimentales sont effectuées sur 4 

stators théoriques identiques afin de quantifier la variabilité de la réponse. Une analyse par éléments 

finis est effectuée ; l'élément hexaédrique à 8 nœuds est utilisé pour modéliser le stator en tant que 

modèle solide homogène linéaire avec propriétés orthotropes, et plusieurs paramètres aléatoires des 

matériaux ainsi que différents niveaux de variabilité sont pris en compte. La simulation de Monte 

Carlo (MCS) utilisée pour évaluer la variabilité des fréquences propres et des FRF. La propagation 

des incertitudes est discutée pour les différents niveaux de variabilité de sortie. Une comparaison 

entre la variabilité expérimentale et numérique est également présentée. Les tendances générales de la 

variabilité observée expérimentalement ont montré une variabilité négligeable pour les fréquences 

naturelles. Mais pour les FRF, comme pour les résultats numériques, une grande variabilité est 

obtenue. 

 

Abstract: 

 

This paper presents a stochastic study to predict the effect of uncertainties on the natural frequencies 

and frequency response functions (FRFs) of an electrical motor stator with quantification of 

experimental variability. Experimental measurements are performed on 4 theoretical identical stators 

in order to quantify the response variability. A finite element analysis is conducted; 8-node hexahedral 

element is used for modeling the stator as linear homogeneous solid model with orthotropic 

properties, and several materials random parameters as well as different variability levels are 

considered. The Monte Carlo simulation (MCS) used to evaluate the variability of natural frequencies 
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and FRFs. The uncertainties propagation is discussed for the different output variability levels. A 

comparison between experimental and numerical variability is also presented. The general trends of 

the experimentally observed variability, showed a negligible variability for natural frequencies. But 

for FRFs, as for numerical results, a high variability is obtained. 

 

Mots clefs: stochastic modeling / stator vibration / experimental variability / 

uncertain material properties / Monte Carlo simulation 

 

1 Introduction 

 

Given the scope of electric machines interest, in particular recently in automotive industry, the 

understanding and thus the control of their vibration behavior is a challenging research issue today. 

Uncertainties in design parameters, induced due to manufacturing process, are affecting the vibrational 

behavior of the machine. Two types of parameters can be distinguished. The first type gathers all the 

parameters related to the material properties such as density and elastic modulus. The second type is 

related to the geometrical parameters and assembling aspects. Therefore, it is necessary to take into 

account uncertainties in the analysis of the dynamic behavior.  

Deterministic methods are not sufficient to simulate the vibration response if the model becomes 

stochastic. The main goal of a non-deterministic analysis is to evaluate accurately the statistical 

quantities of a mechanical system: mean value, standard deviation, coefficient of variation and 

probability density function. Probabilistic approaches are often used to propagate uncertainties in the 

model. For industrial applications, vibration variability was studied by Kompella and Bernhard [1], 

Adhikari and Manohar [2], Soize [3], Arnoult et al.[4], Yin et al. [5], Druesne et al. [6-7], and 

Adhikari et al. [8]. For the non-deterministic case, several methods have been developed such as 

generalized polynomial chaos [9 - 11], Bayesian method [12], the first order and second order 

perturbation approaches [13, 14]. An overview of several stochastic methods is available in 

[15].Among all the probabilistic methods, Monte Carlo simulation (MCS) remains the reference 

method. This non-intrusive and robust method consists of performing a large number of trials in order 

to estimate the output variability, but it can be a time consuming method.  

The objective of this paper is to evaluate the variability of natural frequencies and frequency response 

functions (FRFs) for an industrial stator from experimental and numerical points of view. First, the 

laminated structure is presented and the response variability is quantified experimentally on a set of 

stators in section 2. The numerical modeling of the stator for vibration response is developed for 

nominal and stochastic cases in section 3. In section 4, the MCS method is applied to the model to 

quantify the variability of natural frequencies and FRFs. Then, a comparison between experimental 

and numerical results is presented in section 5. 

 

2 Experimental setting and variability of vibration response 

2.1 Laminated structure and experimental procedure 

 

The vibration experiments are performed on a stator of 48 teeth related to industrial electric motor 

provided by NIDEC Leroy-Somer Company. The stator used in this paper is presented in Figure 1(a) 

and it is composed of 370 sheets of thickness 650  made from M400 – 50A steel. The stator is of 

240 mm length, 135 mm outer radius and 82.5 mm inner radius. The laminated structure is composed 
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of 5 packets with different number of sheets oriented by 90° between successive packets. This set of 

sheets is held by eight staples to insure that no delamination or sliding will occur.  

For vibration measurements, the well-chosen procedure depends mainly on the proper instruments 

suitable for the targeted structure. Several instruments are used, such that laser scanning vibrometer, 

video magnification and accelerometers. As shown in figure 1, the stator is placed on 3 rubber stables 

to approach, as much as possible, the free-free boundary conditions. Figure 1(c) shows the generated 

experimental mesh of 120 degrees of freedom and 40 nodes. FRFs are measured by accelometer after 

radial excitation by the mean of an impact hammer. Moreover, repeatability of experiments is 

investigated to minimize measurement uncertainties where several measurements of FRFs are carried 

out for the stator. 

(a) (b) (c) 

Figure 1: (a) (b) stator in experimental setup, (c) experimental mesh with 40 nodes 

 

2.2 Laminated structure and experimental procedure 
 
The manufacturing of stators made of steel sheets induces uncertainties in material properties, leading 

to variability of responses. In order to evaluate this variability, four theoretically identical laminated 

structures are tested experimentally.  

Table 1: Statistical quantities of natural frequencies for the first 4 experimental modes 

Frequency  Mode  Mean values  

(Hz) 

CoV(f)  

(%) 

1 (2,0) 931.8 0.55 

2 (3,0) 2434.7 0.142 

3 (4,0) 4219.3 0.22 

4 (0,0) 5764.1 0.138 

 

Table 1 presents the experimental statistical quantities for natural frequencies expressed by mean 

values and output coefficient of variation CoV. The output variability obtained is less than 1% which 

considered very low. This means that the variability is negligible for first 4 natural frequencies from 

experimental point of view. Figure 3 shows the first 4 experimental mode shapes. It is classed by 

considering ( ) where i is the mode order in the circumferential direction and j is the mode order in 

the axial direction. The same mode shapes are obtained for the 4 stators, which highlights a modal 

stability. Figure 4 shows the experimental FRFs of the 4 tested theoretically identical stators. This 

figure confirms that the variability at peaks, which represent the natural frequencies, is negligible. 

However, it shows a high level of variability that can reach 143% around the third peaks at 4219 Hz. 
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(a) Mode (2,0) 

 
(b) Mode (3,0) 

 
(c) Mode (4,0) 

 
(d) Mode (0,0) 

Figure 3: First four experimental mode shapes of the stator 

 

 
Figure 4: Experimental FRFs of the 4 stators 

 

3 Nominal and stochastic modeling of the laminated structure 

for vibration response 
3.1    Nominal Modeling  

 
The stator with the dimension presented in section 2.1 is considered as a 3D geometrical model in 

order to calculate all the mode shapes calculated experimentally. As the structure is a stack of sheets, 

the constitutive material is considered linear homogeneous with orthotropic properties. For a given 

point on the structure, the elasticity matrix  is described by the Hook’s law , where is the 

stress tensor and  is the strain tensor. The elasticity matrix  is considered transversely isotropic and 

expressed as:  
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with . 

The characteristics of the elastic behavior of the stator includes: the Young's modulus  in the 

stacking direction (longitudinal), the Young's modulus  in the transverse direction, the Poisson's 

ratio  that corresponds to a contraction in a radial direction when an extension is applied in the 

other radial direction, the Poisson's ratio  that corresponds to a contraction in a radial direction 

when an extension is applied in the stacking direction and the shear modulus  between the 

longitudinal direction and a transverse direction. 

 

3.2    Stochastic modeling of the vibration behavior 

 
For the finite element calculation of natural frequencies and FRFs, the displacement field is discretized 

by using standard polynomial shape functions. In the deterministic case, the equation of motion for 

free vibration is expressed by: 

                                                                       =                                                               (2) 

 

Subscript  defines the nominal case, is the stiffness matrix,  is the mass matrix,  is the 

eigenvalue and  is the eigenvector. 

By considering material random parameters, the elasticity stiffness and mass matrices becomes 

perturbed. The equation of motion is then expressed with  defining the perturbed case:  

 

                                                                                                         (3) 

 

leading to perturbed eigenvalue and eigenvector.  

For the perturbed Rayleigh quotient [6], the expression depends indeed on perturbed mode shapes: 

 

                                                         =                                                          (4) 

 

The equation of motion for forced vibration in the non-deterministic case of finite element dynamic 

analysis leads to the perturbed displacement using the modal superposition technique:  

 

                                                                                                               (5) 

 

where F is the amplitude of the applied harmonic external force and  is the perturbed modal 

matrix. The transfer matrix  can be expressed as:  
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                                                                                  (6) 

 

4 Numerical simulations 

4.1    Nominal mesh, natural frequencies and mode shapes 

 
With finite element method, the stator is modeled using 8-node hexahedral element. Figure 5 shows 

the mesh containing 27600 nodes used following a mesh convergence study in the nominal 

configuration. This mesh is also adopted for the variability study according to the methodology 

proposed by Mahjudin et al. [16] and Yin et al. [17] which confirm that the optimal mesh found in the 

nominal configuration can be exploited to calculate the variability. Figure 6 presents the first 6 

nominal mode shapes and their associated natural frequencies in the low frequency range between 

1002 and 5732 Hz. The mode shape is classed by the same classification methodology presented in 

section 2.2.  

 
Figure 5: Finite element mesh of the stator with 27600 nodes 

 

 
Mode (2,0) – =1002 Hz 

 
Mode (2,1) - =1366 Hz 

 
Mode (3,0) - =2655 Hz 

 
Mode (3,1) - =3163 Hz 

 
Mode (4,0) - =4671 Hz 

 
Mode (0,0) - =5732 Hz 

 

Figure 6: First six nominal mode shapes and natural frequencies of the stator 

 

4.2 Random parameters and Monte Carlo simulation 

 
The material properties are here considered as random parameters. Nominal values of the transverse 

and longitudinal Young modulus, the Poisson ratio and the density are respectively = 208.5 GPa, 

= 180.5 GPa, = 0.3 and ρ= 7700 kg/m³.The random input parameters respected the truncated 

Gaussian distribution law with 3 coefficients of variation CoV = {5%, 10%, 15%} corresponding 
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respectively to low, moderate and high level of variability. Monte Carlo simulation (MCS) is 

performed with a number of trials  to evaluate the output variability of natural frequencies 

and FRFs.  

 

4.2.1 MCS for natural frequencies 

The statistical quantities of natural frequencies obtained from MCS are the mean value and the 

coefficient of variation (CoV). Table 2 presents the output variability levels of natural frequencies for 

different input CoVs.  A first observation is that the output variability is always lower than the input 

variability. Also, it varies between radial modes ((2,0)…) and modes with axial deformations 

((2,1)…), except for density where quasi linear relationship is obtained between input CoV and output 

variability. Among the parameters being studied, ρ and  have an important impact on the natural 

frequencies of the stator.  The effect of  is low and can be considered as insignificant, while for , 

its effect is considerable on the modes with axial deformations only. The highest output level of 

variability is obtained when the density is the single random parameter. When all the uncertain 

parameters are taken into account, the output variability level is reduced. From uncertainties 

propagation point of view, the increase in number of random variables can leads to a compensation 

phenomenon. The same mode shapes are observed for all random trials. A modal stability is obtained 

where the mode shapes remain certain. This meets the conclusion made in [7], that the mode shapes 

are weakly sensitive to random variability in a mechanical system. 

 

Table 2: Coefficient of variation (%) for the first six frequencies calculated by MCS method 

with 3 input levels of variability 

 

Random 

parameters 

Input 

CoV 

CoV( ) CoV( ) CoV( ) CoV( ) CoV( ) CoV( ) 

 5% 1.36 0.50 1.36 0.97 1.36 1.35 

10% 2.79 1.12 2.79 1.96 2.79 2.70 

15% 4.16 1.88 4.16 2.97 4.16 4.10 

 5% 0.17 0.74 0.17 0.51 0.17 0.75 

10% 0.34 1.48 0.34 1.02 0.34 1.59 

15% 0.52 2.20 0.52 1.52 0.52 2.21 

ρ 5% 2.49 2.49 2.49 2.49 2.49 2.49 

10% 5.08 5.08 5.08 5.08 5.08 5.08 

15% 7.88 7.88 7.88 7.88 7.88 7.88 

 5% 0.36 0.23 0.36 0.23 0.36 0.36 

10% 0.92 0.59 0.92 0.61 0.92 1.05 

15% 1.30 0.64 1.10 0.71 1.10 1.90 

,  5% 1.52 1.10 1.53 1.40 1.50 1.60 

10% 2.70 1.07 2.70 1.88 2.70 2.70 

15% 4.10 1.79 4.10 2.88 4.10 4.05 

, , ρ 5% 1.45 2.15 1.45 1.65 1.45 1.44 

10% 2.24 3.37 2.24 2.54 2.19 2.15 

15% 3.15 5.02 3.15 3.90 3.15 3.15 
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4.2.2 MCS for FRFs 

 
The effects of material properties variability on FRFs are here investigated for the stator model. A 

certain excitation is applied using radial unit force. For the frequency range of interest, mean FRFs and 

95% confidence intervals are reported in order to analyze the output variability. Globally, figure 7 

shows that for the different random parameters studied ( ,  and ρ), the output level of variability is 

significant and increases as frequency increases. The vibration response is sensitive to all parameters 

but with various levels. The maximum effect is reported when considering the density as single 

random parameter. When the different parameters ,  and ρ are considered as random together 

(figure 7 – e), the output level of variability is less than when studying ρ alone. Again, the 

compensation phenomenon is observed due to the increase in number of random variables.  

 

 

(a) CoV( )=10% 

 

(b) CoV( )=10% 

 

(c) CoV(ρ)=10% 

 

(d) CoV( )= 10% 
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(e) CoV( )= 10% 

Figure 7: Mean FRFs and 95% confidence interval of MCS for an input CoV=10% on material 

parameters 

 

5 Experimental and numerical comparison 

 
For the numerical modeling, considering the 3 material parameters  as uncertain is the 

most realistic case because all parameters are possibly subjected to variability. So, a comparison 

between these corresponding numerical results and the experimental results is presented in this 

section. Table 4 shows the natural frequencies mean values obtained from the experimental 

measurements and from MCS for four modes (the same mean values are acquired for different 

variability levels in MCS). The relative difference between mean values of natural 

frequencies of the experimental  mode and MCS  mode is also presented using equation (7). The 

results show a relative difference in the natural frequencies mean values between 1.45% and 9.32 % 

leading to a good correlation. Moreover, the coefficient of variation of natural frequencies from MCS 

listed in table 2 are greater than the experimental coefficient of variations of natural frequencies 

presented in table 1. This denotes that the levels of variability assigned in input (CoV = 5, 10, 15%) 

are certainly higher than the real variability of the material parameters. 

 

Table 4: Mean values of natural frequencies for experimental and numerical results 

 

Mode Experimental 

 (Hz) 

Numerical 

 (Hz)  
(%) 

(2,0) 931.8 979 5.1 

(3,0) 2434.7 2624 7.7 

(4,0) 4219.3 4612.7 9.3 

(0,0) 5764.1 5680 1.4 

 

                                               =                                             (7) 

 



24
ème

 Congrès Français de Mécanique Brest, 26 au 30 Août 2019 
 

 

For FRFs, the numerical results concerning 3 material random parameters are also compared to the 

experimental results in terms of CoV in Tables 5. Coefficients of variation of amplitudes are 

calculated at each resonant peak. Again, the statistical numerical results are much higher than the 

statistical experimental results. But, it is noticed that for the 3 compared cases, the maximum 

variability is obtained at the 3
rd

 mode (4, 0). This shows a great interest for this mode and a good 

correlation in the results. In general, numerical results are greater than experimental.  

 

Table 5: Experimental and numerical coefficients of variation (%) of FRFs amplitudes for the four 

modes 

 

Mode  Experimental Numerical with CoV( , , ρ) 

  10% 15% 

(2,0) 24.3 60 79 

(3,0) 44.7 102 157 

(4,0) 143.8 300 462 

(0,0) 66 147 183 

 

6 Conclusion  

 
In this paper, the variability of natural frequencies and frequency response functions (FRFs) for an 

industrial stator is evaluated experimentally and numerically. Firstly, from the experimental point of 

view, the response variability is quantified on 4 theoretically identical stators. No significant 

variability is obtained for the first four natural frequencies in addition to a modal stability. But, the 

variability level of experimental FRFs is noticed to be significant. From the numerical point of view, 

the perturbed natural frequencies and FRFs are calculated for a 3D geometrical model using 8-node 

solid hexahedron elements with 27600 nodes in order to evaluate the effect of material properties 

variability on the vibrations of the structure. The uncertainty propagation is investigated using MCS 

with sufficient number of trials for several input levels of variability. For natural frequencies, the mean 

values and output CoVs are calculated. These statistical quantities lead to notice that the output level 

of variability is always less than the input. Mainly, density and transverse young’s modulus have 

significant effect on the natural frequency, in contrary to the effect of Poisson’s ratio which is 

insignificant. Also, compensation phenomenon is obtained when studying several parameters at the 

same time. For FRFs, the mean values and the 95% confidence intervals are calculated. All the 

parameters studied have relevant effects on FRFs. The levels of variability are noticed to be high and 

increase as the frequency increases. The maximum variability level is reported when considering 

density certain alone. Also, compensation phenomenon is obtained for FRFs.  

A comparison between experimental and numerical statistical results is carried out. A significant 

difference is obtained for natural frequencies and FRFs. Globally, the input levels of variability 

assigned in the numerical model are certainly higher than the real variability of the material 

parameters.  

In perspectives, we aim to link the variability quantified experimentally and the output variability of 

the numerical model to the uncertain input parameters of the stochastic numerical model. 
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