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Résumé :
Cette étude vise à proposer une méthode numérique afin d’estimer la réponse macroscopique pour des
milieux poreux ductiles dont la matrice obéit à un critère isotrope de plasticité dépendant des trois
invariants du tenseur de contrainte. A cette fin, le critère général initialement proposé par Bigoni et
al.,(2004)[2] et récemment particularisé par Brach et al., (2017) [3] est considéré. Ceci permet de dis-
poser d’un cadre unifié pour la détermination des charges limites pour une large classe de matériaux
incluant les métaux, les géomatériaux et les polymères qui sont eux sensibles à la pression, etc. Plus
précisément, une procédure basée sur la méthode d’éléments finis est mis en œuvre pour calculer les
surfaces de plasticité macroscopiques pour divers types de matériaux poreux. Ceci nous a permis d’éva-
luer divers modèles théoriques en portant une attention particulière à l’effet de l’angle de Lode de la
matrice. Les prédictions de la modélisation numérique proposée sont également confirmées et validées
en les comparant avec des bornes supérieures et inférieures numériques disponibles dans littérature.

Abstract :

The aim of this work is to propose a numerical estimate of the macroscopic response for ductile po-
rous material by considering the local plastic behavior as dependent on all the three isotropic stress
invariants. In this light, the general and flexible yield criterion proposed by Bigoni et al., 2004 [2] and
recently particularized by Brach et al., 2017 [3] is considered as a promising candidate to comply with
benchmarking indications on local strength properties. This allows to effectively describe the limit beha-
vior of a broad class of materials, such as pressure independent metals, pressure sensitive geomaterials
and polymers, high strength shape memory alloys, etc. Specifically, a Finite Element-based limit analy-
sis procedure is implemented in order to compute the macroscopic yield surfaces. This allows to assess
theoretical predictions and study different type of porous materials and structures by paying particular
attention to the matrix Lode angle effects. The proposed numerical model is assessed and validated by
comparing its predictions with the available upper and lower bounds in literature.

Mots clefs : Numerical homogenization ; limit analysis ; porous material ; ge-
neral plastic model ; Lode angle effect
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1 Introduction
Micromechanical investigation of porous materials starts about fifty years ago with studies by McClin-
tock [10] and Rice and Tracy [12] based on variational procedures. They have been developed for ductile
porous materials that do not account for any coupling between the plasticity of the matrix materials and
the void growth. Coupled models has been initiated by Gurson [7] who has proposed in his famous paper
an upper bound limit analysis approach by using simplify microstructures such as the hollow sphere and
hollow cylinder having a von Mises solid matrix. Several extensions of Gurson model have been further
developed in literature that account for the void shape effects and traction-compression asymmetry, etc.
Considering the micromechanical modeling for applications to cohesive materials (e.g. geomaterials,
polymers, etc.), Guo et al., 2008 [8] and Cheng et al., 2015 [5] have both adopted the theoretical and
numerical homogenization to take into account the plastic compressibility of the matrix respectively
obeying the associated and non-associated Drucker-Prager yielding laws. However, the aforementioned
models have been derived by assuming that the solid matrix obeys a yield criterion either depending on
the second stress invariant (i.e. J2 plastic rule) or accounting for the first and the second ones. Neverthe-
less, the solid matrix of some engineering-relevant porous materials may exhibit a more complex plastic
behavior that also depends on the third stress invariant, that is on the stress-Lode-angle. Few attempts
have been made in literature to include the influence of all the three isotropic stress invariants for des-
cribing strength properties of porous media. Mention can be made of the studies by Lemarchand et al.,
2015 [9], Anoukou et al., 2016 [1], Pastor et al., 2016 [11]. Some of these studied have been devoted to
the special case of Mohr-Coulomb plastic matrix.

Let us now come to a more general point of view, Brach et al. [3] has proposed a modified form of
strength criterion based on the one of [2] allowing a versatile description of the three isotropic stress
invariants dependence. Concerning porous materials with such a general plastic matrix, mention has to
be made of the theoretical homogenization procedure recently carried out in [4]. The objective of the
present study is to propose a numerical tool able to provide estimates of the macroscopic limit state
for porous materials with a general plastic matrix. To this end, the yield criterion established in [3] is
adopted and implemented for the Finite Elements based homogenization and limit analysis.

2 Constitutive relation of general elasto-perfect-plasticity
We describe in this section the constitutive relation for the matrix material of the porous media, which
is considered to obey a general elasto-perfectly-plastic law. Considering that the matrix as well as the
porous material are both under small strains conditions, the microscopic strain rate tensor d can be
classically decomposed in the form :

d = de + dp (1)

where de and dp are respectively its elastic and plastic parts.

By applying the Hooke’s law, one has

de = M : σ̇ = L−1 : σ̇, with M =
1

2µe
K +

1

3κe
J and L = 2µeK + 3κeJ (2)

where σ is the microscopic Cauchy stress tensor, M and L respectively denote the elastic compliance
tensor and stiffness tensor which, due to the isotropy, depend on the elastic shear and bulk moduli µe
and κe.
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Still, in isotropic case, the plastic limit stress state of the matrix can be fully defined by means of the
microscopic mean stress (or hydrostatic) σm, equivalent stress σeq and stress Lode angle θσ :

σm =
Iσ1
3
, σeq =

√
3Jσ2 , cos(3θσ) =

3
√

3

2

Jσ3
(Jσ2 )3/2

(3)

where Iσ1 = tr(σ), Jσ2 = tr(σ2
d)/2 and Jσ3 = tr(σ3

d)/3 are respectively the first invariant of the
microscopic stress tensor σ, the second and third invariants of the microscopic stress deviator σd =

σ − σm1.

Following [3], the local plastic criterion is defined as

Gs(σ) = m(σ) +
σeq
g(σ)

, m(σ) = −3(h− σm
ξ

), g(σ) =
1

cos
[
π
6β −

1
3 cos−1(γ cos(3θσ))

] (4)

where the scalar functionm(σ) and g(σ) define the plastic yield profile respectively in meridian plane
(i.e. σeq = const.) and deviatoric one (i.e. σeq = const.) [3, 2]. Note that in Eq.(4), h, ξ, β and γ are four
material parameters. More specifically h and ξ are positive defined for physical admissibility reason, β
and γ being dimensionless material parameters which requires the consistency conditions 0 ≤ β ≤ 2

and 0 ≤ γ ≤ 1 to guarantee the convexity of the yield function in the local stress π plane. The parameter
γ induces a smoothing effect on corners.

Next, considering the associated plasticity in the present work, the microscopic plastic strain rate dp can
be calculated by applying the normality law :

dp = λ̇
∂Ps

∂σ
(5)

By combining Eqs.(1), (5) and (2), one has

σ̇ = L :

(
d− λ̇∂G

s(σ)

∂σ

)
(6)

with the plastic multiplier λ̇.
Since the yield function is isotropic and rate-independent, the consistency condition can be written in
the following form :

Ġs(σ) =
∂Gs(σ)

∂σ
: σ̇ = 0 (7)

Inserting Eqs.(6) into (7), one has

λ̇ =
∂Gs(σ)
∂σ : L : d

∂Gs(σ)
∂σ : L : ∂G

s(σ)
∂σ

(8)

The rate form of the elasto-perfect-plastic constitutive relation Eq.(6) can be explicitly expressed as

σ̇ = Lep : d, with Lep = L−

(
L : ∂G

s(σ)
∂σ

)
⊗
(
∂Gs(σ)
∂σ : L

)
∂Gs(σ)
∂σ : L : ∂G

s(σ)
∂σ

(9)
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3 Numerical homogenization
We consider an axisymmetric hollow sphere Ω in the macroscopic cylindrical coordinates (eρ, eϕ, ez)
composed of a void ω embedded in a rigid perfectly plastic matrix ΩM = Ω − ω. The external and
internal boundaries of the hollow sphere Ω are respectively denoted by ∂Ω and ∂ω. The hollow sphere
is subjected to a velocity boundary condition on the external surface ∂Ω given by v = D · x with
D being the macroscopic strain rate and x denoting the position vector at ∂Ω. In the frame work of
homogenization, the macroscopic stress Σ and strain rateD can then be classically defined as volume
averages of their microscopic counterparts σ and d :

Σ =
1

| Ω |

∫
Ω
σ dV = Σρ(eρ ⊗ eρ + eϕ ⊗ eϕ) + Σzez ⊗ ez

D =
1

| Ω |

∫
Ω
d dV = Dρ(eρ ⊗ eρ + eϕ ⊗ eϕ) +Dzez ⊗ ez

(10)

Hence, the macroscopic mean stress Σm, equivalent stress Σeq and the stress Lode angle θΣ can be
calculated as :

Σm =
2Σρ + Σz

3
, Σeq =| Σρ − Σz |, cos(3θΣ) = sign(JΣ

3 ) (i.e. θΣ = 0 or
π

3
) (11)

with JΣ
3 = tr(Σ3

d)/3 is the third invariants of the macroscopic stress deviator Σd = Σ− Σm1.
Similarly, the macroscopic strain rate can be represented by :

Dm =
2Dρ +Dz

3
, Deq =

2

3
| Dρ −Dz |, cos(3θD) = sign(JD3 ) (i.e. θD = 0 or

π

3
) (12)

where ID1 = tr(D), JD2 = tr(D2
d)/2 and JD3 = tr(D3

d)/3 withDd = D−Dm1 being the macroscopic
strain rate deviator.
Moreover, we define the scalar macroscopic deviatoric stress Σgps in relation with the sign of the ma-
croscopic third stress invariant JΣ

3 (i.e. θΣ) through :

Σgps = Σρ − Σz = −sign(JΣ
3 )Σeq (13)

Note that the subscript representing the boundary condition of the hollow sphere under macroscopic
generalized plane strain-rate [1].

3.1 Implementation of the matrix constitutive model
The general elasto-perfectly plastic constitutive relation obtained in section 2 is implemented into an
Umat subroutine (User defined material) by adopting the software Abaqus. Specifically, for each Gauss
point, we have, at the beginning of increment t = tn, the known quantities σn, εn, Mεn, εpn, while at
the end of the increment t = tn+1, σn+1, εpn+1 should be calculated and updated.
Next, by defining the standard “elastic predictor” σe = σn + L : Mεn, we have

— during the elastic loading (i.e. Gs(σe) < 0) : σn+1 = σe and εpn+1 = 0

— during the plastic loading (i.e. Gs(σe) ≥ 0) : σn+1 = σe + Mσ and εpn+1 = εpn + Mλ · ∂Ps

∂σn
|n
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The plastic multiplier Mλ as well as the stress correction Mσ can be calculated by using an implicit
Newton-Raphson scheme by solving the following equations :

Gs(σe + Mσn) = 0

Mσn − L : Mεn + MλL :
∂Ps

∂σn
|n= 0

(14)

Note that in the present work, the local plastic singularities in the case of γ = 1 upon the deviatoric stress
π plane can be automatically regularized by adopting a relatively approximate value, for instance γ =

0.99. This approximation will show to be sufficiently accurate and efficient in the numerical simulations.

3.2 Multipoints constraint boundary conditions
As aforementioned, any macroscopic loading applied to the axsymmetric hollow sphere can be referred
to one of two following cases in relation with the macroscopic stress triaxiality T . Let us denote in
cylindrical coordinates :

— Axisymmetric extension (denoted AE) :

sign(JΣ
3 ) > 0 and θΣ = 0 : Σz ≥ Σρ = Σϕ (15)

T is then expressed as T = 1+2τ
3(1−τ) with τ = Σρ/Σz

— Axisymmetric compression (denoted AC) :

sign(JΣ
3 ) < 0 and θΣ =

π

3
: Σρ = Σϕ ≥ Σz (16)

T can be recast into T = 2+ς
3(1−ς) with ς = Σz/Σρ

The numerical homogenization will then be carried out by developing and implementing a user-defined
subroutine called Multi-Points Constraints (MPCs) of Abaqus. It is used, for instance, to describe the
velocity field v on the external boundary of the hollow sphere such that the constraint of constant ma-
croscopic stress triaxiality T can be always fulfilled during the elasto-plastic loading :

v = D(τ, ς) · x 7→ vρ = Dρ(τ, ς) · xρ, vz = Dz(τ, ς) · xz (17)

with x = xρeρ +xθeθ +xzez the position vector in cylindrical coordinates of any point of the external
boundary of the hollow sphere. Readers are referred to [5, 6] for more details about the MPCs boundary
conditions.

4 Illustration, assessment and validation
We first present in Fig.1 an example of results obtained frome computations performed in the case
of porosity f = 10%. The material parameters h = 0.5323, ξ = 5.1620, β = 0.6277 and γ = 1

correspond to a Mohr-Coulomb type matrix : friction angle φ = 20◦ and cohesion c = 1MPa. We
compare the obtained results to the analytical model proposed by [1] and to the numerical limit analysis
(upper and lower bounds) from [11]. Excellent agreement is noted, especially between the numerical
homogenization results and the upper and lower bounds. It is also worthy to note that the slight difference
between them may be due to the approximation adopted in the treatment of the yield singularities in the
deviatoric plane. Next, Fig.2 illustrates in general cases the effect of ξ, β and γ on the macroscopic
strength surface. Specifically, it can be observed in Fig.2(a) that the asymmetry between the traction
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Figure 1 – Assessment and validation of the numerical homogenization model proposed in the present
study (denote FEM) by comparing its prediction with the numerical upper and lower bounds (respecti-
vely denoted UB and LB) of [11] and the analytical macroscopic yield criterion (denoted AM) proposed
by [1] in the associated Mohr-Coulomb case for porosity f = 0.1 and friction angle φ = 20◦ and 5◦.

(Σm > 0) and compression (Σm < 0) increases with the decreasing of ξ value, while the one between
AE (JΣ

3 > 0) and AC (JΣ
3 < 0) is less important. Moreover, as illustrated in Fig.2(c), the asymmetry

between traction and compression is less important when γ varies, whereas the AE-AC asymmetry is
significant when γ = 1 (i.e. Mohr-Coulomb type matrix) which is due to the "extremely" effect of the
microscopic Lode angle effect. Finally, it is interesting to note, by comparing Fig.2(b) with 2(a) and 2(c),
that the parameter β has both important influence on the macroscopic traction-compression asymmetry
and on the AE-AC one. It is logical since that this parameter β could substantially change the local plastic
yield loci not only on the meridian plane but also on the deviatoric one (see Eq.(4)). Consequently, the
macroscopic yield strength has a relatively significant sensitivity on it after homogenization.

5 Conclusion
In this work, we have developed a finite elements based micromechanical modeling approach of the
limit state of porous media with a general plastic matrix. The local behavior is described by the plastic
strength criterion proposed in [3] which is implemented in a UMAT subroutine. The numerical homo-
genization has been performed by defining a macroscopic stress third invariant sign dependent Multi-
Points Constraints boundary conditions. We demonstrate the capability of the resulting numerical model
to produce very accurate estimates of the macroscopic yield surfaces, validated here by comparaison to
available numerical limit analysis bounds. Note that, although the implemented model is used here only
for limit analysis purpose, the numerical tool can be also used for various structural computations invol-
ving materials which can be suitably described by the developed general model.
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Figure 2 – Effect of material parameter ξ, β and γ on macroscopic yield surface.
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