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Résumé : 

 

Les géomatériaux et autres matériaux fragiles tels que les bétons, les roches, le verre, la glace de 

grêlons, les céramiques sont présents dans de nombreuses problématiques de recherche industrielles 

ou du génie civil faisant intervenir des conditions de chargement de traction dynamique. Sous de telles 

conditions de chargement les matériaux fragiles subissent un processus de fragmentation multiple 

constitué de nombreuses fissures orientées déclenchées sur des défauts critiques. Cependant, faute de 

données sur les défauts activés à très petite échelle, le processus de fragmentation reste difficile à 

modéliser. La chaire Brittle’s CODEX vise à mieux comprendre le lien entre les paramètres 

microstructuraux des matériaux fragiles et leur réponse sous chargement à très haute vitesse de 

déformation. Dans la présente contribution, un modèle analytique du processus de fragmentation 

dynamique est développé en considérant une distribution quelconque de défauts critiques. Dans un 

deuxième temps, les microstructures de trois matériaux fragiles sont analysées par tomographie à 

rayons X. Sur la base de ces données expérimentales les propriétés de fragmentation dynamique d’une 

de ces microstructures sont prédites en fonction de la vitesse de chargement. 

 

Abstract: 

 

Brittle materials are subjected to high-strain-rates tensile loadings in various conditions such as in 

protective structures subjected to impact or blast, in the mining industry or in various industrial 

processes. Under very high strain-rate loadings, brittle materials experience a multiple-fragmentation 

process made of numerous oriented cracks triggered on critical defects. However due to a lack of data 

regarding the activated defects at very small scale the fragmentation process remains difficult to 

model. The Brittle’s CODEX chair aims to gain insight into the link between the microstructural 

parameters of brittle materials and their response under very high-strain-rate loading. In the present 

contribution, a closed form solution of the fragmentation process is developed considering any 

populations of critical defects. Secondly, the microstructure of three brittle materials is being analysed 

by using x-ray micro-tomography. Based on these experimental data the dynamic fragmentation 

properties of one of these materials are predicted as function of the applied loading rate. 
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1 Introduction 

 

Brittle materials are extensively employed in many civil and military applications involving high-

strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic 

armour or transparent windshields, plastic explosives employed to damage or destroy concrete 

structures, soft or hard impacts against concrete structures, etc. In all of these applications, brittle 

materials are subjected to intense loadings characterized by medium to extremely high strain-rates 

(few tens to several tens of thousands s
-1

) leading to extreme and/or specific damage modes such as 

multiple fragmentation, dynamic cracking, pore collapse, spalling, mode II fracturing, etc... 

Additionally, brittle materials exhibit complex features such as strong strain-rate sensitivity and a 

transition from a probabilistic response at low strain-rates to a deterministic behaviour at high-strain-

rates that justify expending greater research efforts to understand these complex features.  

 

The aim of the present work is to illustrate how the distribution of critical defects may influence the 

dynamic fragmentation properties at high strain-rates. In the first part of the paper the basis of the 

fragmentation model are detailed. In the second part predictions of the model  

 

2 Modelling of multiple fragmentation process in brittle solids: 

the DFH (Denoual-Forquin-Hild) model 

 

The fragmentation process induced in brittle materials under high-strain-rates tensile loadings 

corresponds to the initiation and propagation of a large number of cracks from volume or surface 

defects that exist in a structure Ω of size Z, Z being a length, a surface area, or a volume. The point 

defects can be assumed to be randomly distributed and activated at various or random level of stress 

that can be a function of the size of each defect as considered in (Jayatilaka and Trustrum, 1977). The 

number of critical defects in Z (i.e., whose activation stress is exceeded) can be described by a density 

of critical defects related to the applied stress level λt (σ). The schematic of a fragmentation process is 

illustrated in the Figure 1. Defects are distributed along the horizontal axis that represents the spatial 

scale and the vertical axis that represents the time-scale or stress-level scale assuming that the stress 

level varies linearly or monotonously with time. As the stress level is increasing (σ
°
 > 0), the number 

of critical defects increases. However, the first cracks that propagate from the first critical defects relax 

stresses in their vicinity (σ
°
 < 0) and prevent the activation of critical defects in an “obscured domain” 

of size Zo(T – t) centred on this crack, where T – t corresponds to the time interval between the crack 

inception t and the current time T. The growth of obscuration domains (i.e., zones in which σ
°
 < 0) 

from activated defects is depicted by triangles (obscuration hyper-cones) in the Figure 1, assuming a 

constant propagation velocity. The fragmentation process ends when the whole domain is obscured. 

The fragmentation process can be described through the obscuration probability concept by 

considering the condition (in terms of probability) for a point M at a time T not to be obscured, i.e., 

able to initiate a new crack from a critical defect that would exit at that point M activated at time T. 
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Figure 1. Obscuration phenomenon and horizon of a point (M,T) (Forquin and Hild, 2010). 

According to the concept of “local weakest link hypothesis” introduced in (Forquin and Hild, 2010) 

the probability of non-obscuration Pno is equal to the product of the elementary probabilities of no new 

crack inception P
i
∉ in each elementary space–time zones of Ω belonging to the horizon of the point M 

at time T: 
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where P
i
∉ is expressed as function of the density of critical defects λt  (x, t). If ones considers that λt  is 

a continuous function between t and t+dt P
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∉ reads: 
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Otherwise if the density λt  (x, t) is discontinuous between ti and ti+dt, expressing λt(x, ti+dt) - λt(x, ti) = 

[λt]x,ti, the elementary probability of no-inception of new crack in the space-time area dZ x dt located at 

(x, ti) is expressed as: 
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Finally, by combining equations (1), (2) and (3) the non-obscuration probability at (M, T) takes the 

following expression: 

 [ ]
[ ][ ] 













−

∂
∂−= ∫∫ ∑ ∫

Ω∈∈ Ω∈∈),(),( ),(),(

),(

),(
exp),(

TMofhorizontx i TMofhorizontx

txt
t

no

i

i
dZdZdt

t

tx
TMP λλ

 (4) 

If one assume a zero density of cracks at time T = 0 the crack density can be obtained by integrating its 

derivate or summing its increments: 
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Given that new cracks are initiated only in the not-obscured part of the domain the increment of new 

cracks can be assumed to be proportional to the increment of critical defects weighted by the fraction 
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of non-obscured zones. Considering a fraction of non-obscured zones being equivalent to the 

probability of non-obscuration the increment and derivate of crack density reads: 
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Finally, if one assumes as first approximation no interaction between cracks, the number of cracks 

generated in the domain at time T can be computed as a function of the crack density according to: 

 ∫
Ω

= dZTMTN crackscracks ),()( λ  (7) 

In addition, in the case of a multiple fragmentation process, which corresponds to the non-interaction 

of the horizon of point (M, T) with the boundaries of the domain according to (Forquin et Hild, 2010), 

the probability of obscuration can be used as a damage variable D. Therefore, the macroscopic stress Σ 

can be calculated as function of the microscopic stress σ such as: 

 Σ(Τ  ) = (1 - D(T ))σ   (Τ  )   with   D(T ) = 1-Pno(T ) (8) 

Therefore, the ultimate (maximum) macroscopic strength may be deduced: 
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Finally, the knowledge of the density of critical defects appears to be essential to be able to predict the 

macroscopic strength and cracking density in brittle solids subjected to a high strain-rate tensile 

loading. 

 

3 Predictions of DFH model considering a power-law function 

of λt (σ) 

 

Two parameters need to be considered to be able to express the obscuration probability (Eq. 4): the 

density of critical defects and the shape of the horizon at point (M, T). In the present subsection the 

density of critical flaws is given in the form of a power law of the positive (tension) principal stress: 
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In addition, considering that each zone of stress release (obscuration zone) is centered on the point of 

crack initiation and assuming that is grows in a self-similar way with a diameter proportional to the 

size of the crack the size of the zone of obscuration at a time T corresponding to a single crack created 

at time t can be expressed as: 

 [ ] ( )( )
n

oZ T t S k C T t− = −    (11) 

where S is a shape parameter of the obscuration volume (equal to 4 π / 3 if ones assumes that 

obscuration volumes are similar to spheres in a 3D medium (n = 3), S = π for a disc in a 2D medium (n 

= 2) or S = 2 in a 1D medium (n = 1)). When the horizon is strictly included inside the domain and if a 

uniform stress field is assumed, the obscuration probability corresponds to (Denoual and Hild, 2000): 
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Moreover, assuming a constant stress rate (σ
° 

) an analytical closed-form solution of the obscuration 

probability (or equivalently the damage variable D) can be obtained as a function of three parameters, 

namely, n the space dimension, m the Weibull modulus, and T / tc the dimensionless time: 

 
! !

( ) 1 exp
( )!

m n

o

c

m n T
D T P

m n t

+  
 ≡ = − −   +   

 (13) 

The characteristic time tc is given by: 
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For any value m > 3 and considering n = 3, the probability of obscuration is less than 5% at T = tc and 

it is greater than 95% at T = 2tc.  Therefore, the characteristic time represents the time during which 

most of the obscuration phenomenon occurs. In addition, a characteristic stress and a characteristic 

density may be defined in the following way: 

 σc = σ
°
.tc   and   λc = λt (σc) (15), (16) 

The corresponding closed-form solutions read: 
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and 
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By using the closed-form solution of the non-obscuration probability (Eq. 13) into the equations (5) 

and (6) the normalized crack density is obtained: 
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where γ is the incomplete gamma function defined as: 
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At the end of loading, the final crack density can be expressed as function of m, n and the 

characteristic density: 
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In the same way, by using the closed-form solution of the non-obscuration probability (Eq. 13) into the 

equations (8) and (9) the ultimate macroscopic strength can be expressed as function of the 

characteristic stress: 
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Equation (22) is used in the subsection 5. 

 

4 Density of critical defects in three brittle materials 

 

In the present works the microstructure of three different brittle materials (concrete, ceramic and 

polycrystalline ice) was examined prior testing. In order to identify the initial microstructure, a few 

samples of each material were scanned using two X-ray scanners available in 3SR and SIMaP 

laboratories. In both devices an X-ray source generates a beam which is collected by a panel detector. 

The sample is placed on a platform rotating around the vertical axis so the 3D image of the specimen 

is reconstructed from the acquired radiographs. By performing a thresholding, the image is binarized 

to identify the pores. Next, 3D image processing techniques are used to label the pores and to get their 

volumes. By approximating all the pores to spheres, the equivalent diameter distribution of each 

sample is obtained.  

 

The first microstructure is an Ultra-High Performance Concretes (UHPC) that is characterised by a 

high compressive strength (above 140 MPa). The concrete formulation benefits from a reduced grain 

size (≤ 0.5 mm), a high level of particles packing and a small water to cement ratio (W/C ≤ 0.2), so the 

amount of porosity is minimized. In order to identify the initial microstructure, a sample was scanned 

using the X-ray scanner in 3SR Laboratory with an achieved resolution corresponds to a pixel size of 

70 μm.px
−1

. The distribution of pore size is shown on the Fig. 2a. The second studied material is an 

artificial and equiaxed polycrystalline ice grown in laboratory (in the cold room of IGE). The final 

porosities and pore size distributions are controlled by the initial amount of air and the growth 

temperature. The pore size distribution obtained via X-ray tomography analysis allows assessing the 

sample reproducibility and homogeneity (Fig. 2b). The third microstructure is a dense SiC material in 

which a controlled porosity is introduced (Fig. 2c). The large pores are supposed to act as fusible flaws 

during a dynamic tensile loading preventing the crack initiation on smaller (and more numerous) 

pores, thus limiting the multi-fragmentation. 
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Figure 2. Three microstructures studied in the present work. (a) Distribution of pore size and binarized 

image by thresholding in an ultra-high performance concrete scanned with X-ray tomography system. 

(b) Slice view of an X-ray tomography scan from a high air content polycrystalline ice specimen. (c) 

SEM image of dense SiC material with added controlled porosity. 

 

5 Predictions of the fragmentation properties of one brittle 

material based on tomographic analysis 

 

In this last section the fragmentation properties of the UHPC are predicted based on the previous 

tomographic analysis. To do so, the previous cumulative distribution of pores provided in Fig. 2a 

(density of critical defects versus equivalent pore diameter) needs to be converted into a function of 

density of critical defects that is function of the applied microscopic stress. As previously introduced 

by several authors (Jayatilaka and Trustrum, 1977; Hild, 1992; Forquin et al, 2004) the linear fracture 

mechanics theory can be used to link the size of pores to their expected crack-inception stress. 

According to this theory the stress intensity factor KI related to a crack of size (2.a) is given by the 

following equation: 

 �� � ��√�� (23) 

where Y is a dimensionless correction factor, also often referred to as the geometric shape factor, that 

is related to the geometry of the crack. In the case of a straight crack of length (2.a) in an infinite plate 

having a uniform stress field and assuming this crack perpendicular to the loading direction this 

correction factor is (Y = 1). In the case of a penny-shaped crack of radius (a) in an infinite domain 

under uniaxial tension σ the geometric shape factor is (Y = 2/π). Next, considering the critical stress 

intensity factor ��	  of the tested material the macroscopic stress to trigger an unstable crack is given 

by: 

(a) 

(c) (b) 
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In the case of UHPC defect’ population (Fig. 2a), the shape of flaws is complex and difficult to 

capture and a dimensionless parameter Y different from 1 needs to be considered. This parameter was 

adjusted based on the results of three-point bending tests (not presented in the present paper). The best 

fit of data from bending tests was obtained with (Y = 0.91). Now, based on data from tomography 

analysis the density of critical defects can be plotted as function of their expected critical stress (Fig. 

3a) and a polynomial function can be easily fitted such as: 

 λ
��� � exp	�∑ ��������
���  (25) 

Finally, considering a linear increate of microscopic stress as function of time (σ(t) = σ°.t) the 

obscuration probability was calculated by double integration of the following equation derived from 

Equation (12): 
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with the following parameters (n = 3, S = 3.74, kC = 1856 m/s). By introducing the density of critical 

defects of Eq. (25) into the Eq. (26) the obscuration probability evolution is obtained so the cracking 

density and the macroscopic stress provided by Equations (6) and (9) are deduced. Lastly, the final 

cracking density and the ultimate macroscopic strength can be depicted as function of the strain-rate. 

The predicted the macroscopic strength of the UHPC is plotted as function of the strain-rate 

considering both the Weibull density of critical defects (power law function) and the identified 

function of Fig. 3a. Whereas a good match is obtained at low strain-rate, at high strain-rate, a higher 

level of strength is predicted with the population of defects identified from the tomography analysis 

compared to the Weibull population of defects. The main reason is that, at the highest strain-rates, 

numerous small defects are activated that are not captured by the Weibull power-law function. Finally 

this approach demonstrates the interest to consider a defect’ population identified from tomography 

rather than from bending tests performed by considering a single sample size. 

 

 
Figure 3. (a) Identification of the density of critical defects as function of the applied stress. (b) 

Predictions of the macroscopic strength as function of the strain-rate considering (i) a density of 

critical defects as a power law function of the applied stress (Weibull law) and (ii) the identified 

function of Figure 3a. 

 

 

Applied tensile stress (Pa) Strain-rate (1/s) 

Polynomial approximation Polynomial equation 
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6 Conclusion 

 

In the present paper a new methodology is proposed to model the multiple fragmentation process in 

brittle solids based on data provided by micro-tomography analysis. Samples of three different kinds 

of brittle materials, an ultra-high performance concrete, a polycrystalline ice and a SiC ceramic in 

which a controlled porosity made of large pores was introduced, have been analysed through an X-ray 

tomography analysis. A processing of data allows the pore size distribution to be deduced. By leaning 

on the linear fracture mechanics theory the density of critical defects is expressed as function of the 

applied stress. Finally, general equations of Denoual-Forquin-Hild obscuration model are applied with 

the deduced density of critical defects. Predictions can be made in terms of final cracking density and 

ultimate macroscopic strength as function of the applied strain-rate. This methodology applied to the 

data of the UHPC reveals that the obtained predictions at the highest strain-rates may differ from the 

results provided by the classical Weibull approach. Finally, the tomography analysis constitutes a 

promising approach to improve the predictions of dynamic fragmentation process over a large range of 

strain-rates. 
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