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Abstract :  
In the case of a rapid wetting and drying, water movements result in a rapid change in capillary 

pressure. The models used until now to predict the shrinkage process of most porous media are based 

on the quasistatic behavior laws and totally neglect the dynamic effects. In this paper, a new model 

which considering the dynamic effect is put forward to predict the influence of dynamic effects on 

coupled unsaturated fluid (water-air) transport and mechanical deformation. And 2D geometric model 

of soil is adopted as homogeneous porous media to verify the meaning and impact of this refined 

dynamic model through finite element software COMSOL Multiphysics. It proves that dynamic effects 

cannot be neglected in the procedure of fluid-solid coupling. The faster the relative humidity boundary 

conditions change, the more obvious the dynamic effect. And the dynamic effect is more significant 

close to surface. 
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1 Introduction  
Repeated wetting-drying cycles cause significant swelling and shrinkage phenomena which lead to 

cracks and corrosion of the porous materials. To predict these risks, experimental procedures and 

highly sophisticated models have been developed by researchers around the world: 

- experiments help define probabilistic laws to predict the risk, 

- models try to approach real phenomena based on physical relationships. 

In the case of wetting-drying cycles, the differences observed between the numerical and experimental 

results can be explained by a phenomenon little known: the dynamic effect which is proposed by 

Hassanizadeh and Grey [1] on the capillary pressure (difference between the pressure of the water and 

that of the interstitial gas in the pores of the porous media). Indeed, in the case of a rapid wetting and 

drying, water movements result in a rapid change in the capillary pressure. By-also known as capillary 

pressure is the main cause of delayed deformations (shrinkage) in most of porous media especially the 

concrete and soil. These deformations are often the cause of the occurrence of micro-cracks and must 

be mastered. Recent researches have allowed offering capillary pressure law taking into account the 

dynamic effects [2-5]. However, most of models used until now to predict the drying of porous 

materials are based on the quasi-static behavior laws and totally neglect the dynamic effects. Few 

studies have investigated dynamic models.  

The main purpose of this paper is to put forward a widespread model based on the poromechanics 

theory to coupling the deformation of porous matrix and the unsaturation two phases flow (water-air) 

inside of it under the condition that considering the dynamic capillary effects and phase transformation. 

Thereafter this widespread model is simplified based on Richards’ equation which means that air 

pressure is constant and equals to atmospheric pressure. And this new model is written into finite 

element software COMSOL Multiphysics to simulate the water-air two-phase flow inside of soil. The 

simulation result proves that dynamic effects have a non-negligible influence on the fluid-solid 

coupling. And its influence is obvious when suffering a sudden and rapid change of surrounding 

relative humidity. The closer to the surface or interface, the dynamic effect is greater. 
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2 Governing equation  

2.1 Dynamic effects 

For the pressure difference 
G L

P P  which is the commonly measured quantity, is denoted as dyn

C
P  

and the equilibrium (or ‘static’) capillary pressure 
C

P  is denoted as stat

C
P  The difference between 

dynamic capillary pressure and static capillary pressure is illustrated as : 

 dyn stat

C C
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P P
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  (1) 

Where   is the dynamic effects coefficient. Here an empirical equation developed by Stauffer [6] 

is adopted. 
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Where   is assumed to be constant and equal to 0.1 for all soils;   is porosity, 
L

  is viscosity; 

eP  and   are coefficients in the Brooks-Corey formula. 
eP is air entry pressure,

 
  is pore size 

distribution index. 

2.1 The Deformation of Skeleton 
The principle of effective stress is central to pore mechanics. It is the effective stress causes the 

deformation of the skeleton. The stress–strain equations of a linear, isotropic, elastic porous material 

under unsaturated flow and infinitesimal transformation conditions are presented here. 

        ò2
ij ij ij ij

bP G   (3) 

ij
  is stress tensor; 

ij
  is strain tensor; b  is Biot coefficient; G  is shear modulus;   is Lame’s 

moduli; ò is the volumetric shrinkage and ò
ii

; 
ij

  is Kronecker delta symbol. Because capillary 

pressure 
C

P  equals is the difference between gas pressure 
G

P  and liquid pressure
L

P . So that 

        ( )1
L G L L G L C

P S P S P S PP   (4) 

P  is the average pore pressure including the part of water pressure and that of gas mixture pressure; 

L
S  is liquid saturation. 

The geometric equation and equilibrium equation are showed as follows 
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i
u  is displacement; 

i
f  is body forces.  

Substituting the geometric equation (5) into constitutive Equation (3) to get an equation to 

express the stress components 
ij

 as functions of the derivatives of the displacement components 
i

u . 

Replacing those equations into equilibrium equation (6) and neglecting the body force 
i

f . 

Furthermore considering the dynamic effects it derives the governing equation of deformation: 
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2.2 The unsaturated fluid flow 

The mass balance of the liquid water and the gas mixture are: 
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  is Eulerian porosity;   is density; V is velocity. 
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If the variations of the atmospheric pressure are neglected, one can consider the pore air to be 

essentially at a constant atmospheric pressure. The capillary pressure is now uniquely defined by the 

water pressure. For convenience it is often assumed that the reference atmospheric pressure 0
atm

P  , 

so one can write 

 
C atm L L

P P P P      (10) 

Because the coupling of fluid flow and the deformation of the skeleton, the velocity of fluid should be 

rewritten as the Darcy’s velocity subtracts the average skeleton velocity 
L

u
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t
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Additionally, the compressibility of the water is neglected here. So that the spatial gradients of the 

water density and its derivative with time are negligible. The governing equation is rewritten as 
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The van Genuchten and the Brooks-Corey formulas that describe the change in /
L C

S P  , 
L

S , 
rL

k  with 

the only variable 
L

P . Until now, the simplified model that governs the coupling between water-air two 

phases flow and linear elastic porous media under dynamic effects condition has been built. 

3 Simulation and conclusion 

A 2D geometric model (disc with radius 0.5m) of soil is adopted as homogeneous porous media to 

verify the meaning and impact of this dynamic model through finite element software COMSOL 

Multiphysics. 

The following Table 1 gives the other necessary variables. Initially, the boundary pressure head is the 

same as the initial pressure head. While from t=100s to t=200s, the pressure is reduced from -0.1m to -

0.2m rapidly, afterward it remains constant. 

Table 1. Variables of the simulation 

Variables Unit Description Value Variables Unit Description Value 

L
  3/kg m  Fluid density 1000 s

  1 Saturated porosity 0.417 

g  2/m s  Gravity 9.82 r
  1 Residual saturation 0.02 

s
K  /m s  

Saturated hydraulic 

conductivity 

5.8333e-

5 
P

H  m  
Initial water pressure 

head 
-0.1 


 1 Brooks-Corey coefficient 0.592 E  Pa  Young’s modulus 4e7 

ce
H

 
m  Entry pressure head 1/13.8 v  1 Poisson’s rate 0.25 

l
 

1 Pore connectivity parameter 1 s
  3/kg m  Soil density 2000 

Figure 1 illustrates the capillary distribution with time. It is obvious that the capillary pressure 

increases very rapidly in areas close to the boundary. The closer to the boundary, the greater the 

capillary pressure is. Another important finding is that the capillary dynamic effect is more 

pronounced at the region close to boundary than the region close to center especially during the initial 

stage. As time passes, dynamic effects continue to decrease. Figure 2 illustrates the von Mises stress 

distribution with time. In generally, Dynamic effect causes stress to be slightly lower than that under 

standard coupling conditions. The stress magnitude is not monotonous along the radius. It undergoes a 

process of decreasing at first and then increasing when close to the boundary. Figure 3 obviously 

demonstrate that dynamic coupling causes a leap in stress comparing with standard coupling when the 

boundary head pressure is rapidly changed in short time. Figure 4 demonstrates von Mises stress under 

the condition that the boundary pressure head decreases more rapidly from -0.1m to -0.2m within 50s, 

it seems that the faster the boundary condition changes, the more obvious leap of the von Mises stress. 

It proves that the stress leap influenced by the change rate of the surrounding environment. A more 

rapidly change of surrounding relative humidity is easier to cause the larger stress and lead to cracks in 

porous media. 
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Figure 1. Capillary pressure with Time 
 

Figure 2. von Mises stress with Radius 

  
Figure 3. von Mises stress with Time 

 

Figure 4. Dynamic von Mises stress with time 
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