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1   Introduction 
The fracture of ductile materials is often the result of the nucleation, growth and coalescence of micro-
scopic voids. In this work, we focus on the growth process of voids when the material is subjected to
high strain rate loading. Under such loading conditions, micro-voids sustain an extremely rapid expan-
sion which generates strong acceleration of particles in the vicinity of cavities. These micro-inertia ef-
fects are thought to play an important role in the development of dynamic damage. To account for
these large accelerations in the constitutive behavior, a multi-scale approach has been proposed in [1].
Up to now, micro inertia effects were mainly evaluated for porous materials containing spherical or
spheroidal voids. In the present talk, we are focusing on the description of the behavior of a porous
material with cylindrical voids under dynamic conditions.
Note that such a configuration was already considered in [2], but the contribution of the acceleration in
the direction aligned with the axis of the cylinder was disregarded. This formalism leads to neglect the
influence of the length of the cylinder on the dynamic response, which may be too restrictive in some
situations. Here, we propose to investigate the dynamic expansion of cylindrical voids under axi-sym-
metric loading conditions. The present modeling includes two length scale effects: the one related to
the initial void radius, and the one brought by the initial length of the voids. The results obtained from
the modeling are validated through comparison with finite element calculations conducted on a unit
cell (Abaqus/Explicit). Within the present approach, the effects of the initial length of the voids on the
macroscopic response are clearly highlighted.

2   Modeling
To derive the constitutive model for a porous material with cylindrical voids, a multiscale approach
founded on the work of Molinari and Mercier [1] is adopted here. Under dynamic loading, when mi-
cro-inertia effects need to be accounted for, the macroscopic stress can no longer be defined as the vol-
ume average of the local stress (static definition). In fact, due to large acceleration developed at the lo -
cal scale, the macroscopic stress tensor Σ appears as the sum of two contributions: micro-inertia inde-
pendent term Σstat and a dynamic term (micro-inertia dependent term) Σdyn :

                                                                                                                                  (1)
In our approach  Σstat will be derived from the Gurson model [3]. The  Σdyn tensor will be evaluated
based on admissible trial velocity fields proposed by Gurson [3].

2.1  Representative Volume Element (RVE)
In this work, the focus is on the dynamic response of porous medium with cylindrical voids. The RVE,
similar to the one proposed by Gurson [3], respectively consists of a hollow cylinder of current inner 
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radius a, outer radius b, length L, see Fig. 1. The corresponding initial geometrical features are a0, b0 

and L0. The current and initial porosity are given by and  .

                     

Fig 1: RVE (Representative Volume Element) for a porous material containing cylindrical void.

The matrix surrounding the cylindrical cavity is assumed incompressible and elasticity is neglected. So
the time evolution of the porosity is thus:                                        

                                                                                                                                  (2)

where Dm = (trD)/3, where tr (.) is the trace of second order tensor (.).

In the present talk, the material is assumed perfectly plastic with standing for the matrix yield stress.

The RVE is subjected to transversely isotropic loading conditions. In that case, the macroscopic stress
and strain rate tensors are written in the orthonormal frame basis (e1, e2, e3) as, see Fig.1:

                                  and                                       (3)

2.2  Micro-inertia  independent  stress,  Σstat and  Micro-inertia
dependent stress, Σdyn
The static stress tensor of Eq. (1) is derived from the yield function proposed by Gurson [3] for

cylindrical voids. Under axi-symmetric loading, the yield function  is expressed as:

,    (4)

where (.)’  denotes the deviatoric part  of  the second order tensor (.)  and ‘:’  stands for the double
contracted product. For axi-symmetric loading, the stress and strain rate tensors are related by explicit
expressions, [8]. In this case:

                                     ,                                              (5)

where, , 

with  . 

The plane strain configuration where D33=0 (i.e. the length of the cylinder remains constant L=L0) is
also treated in the paper. In that case, Eq. (5) reduce to

                                            (6)

Note from Eqs (1, 6) that when micro-inertia is neglected and the plane strain case (D33=0) is adopted,
the stress tensor is hydrostatic given in Eq. 6. However, this is no more valid when micro-inertia is

included. For sake of brevity, the dynamic stress tensor of Eq. (1) is put in a condensed form. In

the case of axi-symmetric loading, the components of are written as:
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                                                (7)

where F and G are functions depending on the porosity f, quadratic terms involving and  and

linear terms implying the time derivatives and This confirms the particular rate dependencies

brought by the micro-inertia to the overall response, already noticed for spherical and spheroidal voids
[1,4]. Eq. (7) also reveals that the dynamic stress is scaled by the matrix mass density and involves the
square of  the void radius and the void length. More specifically, an important outcome of the model is
the  differential  lengthscale  effect  which  exists  between  in  plane  and  axial  components  of  the

macroscopic stress. Namely, it is observed that the in plane stress components  are only

related to the square of the void radius while is linked to the square of the void radius a2 and the

square of the void length L2. In the plane strain case,  D33=0, the following explicit relationships are
obtained:

         (8)

Interestingly, Eq. (8) show that micro-inertia effects are still present in  This means that limiting

the analysis  to  a  2D plane configuration,  thus  ignoring these effects,  may leave aside substantial
information on the role played by micro-inertia. 

2   Results
We consider the dynamic response of a porous medium with cylindrical voids (initial  void radius

ao=50µm, initial external radius b0=1500µm, leading to ). Various values of the initial

length of the cylinder are considered. The matrix parameters are 

The porous material is subjected to dynamic loading leading to void expansion. The following distinct
loading conditions are considered: 

- spherical loading where the stress components are prescribed: 

- axi-symmetric loading where D33=0 is imposed and  are prescribed.

In the following, a constant value of stress ramp is adopted:   In addition, once a

critical porosity is reached (here taken as 0.3), the failure of the material is assumed to occur with no
coalescence stage. This type of ultimate failure mechanism (direct impingement) will occur in ductile
materials  when submitted to planar impact  experiments  [6,7].  Note that  results  obtained from our
analytical  modeling  have  been  accurately  compared  to  unit  cell  calculations  conducted  using
Abaqus/Explicit (not shown here). Moreover, for the cases treated in the paper, we have noticed a
perfect  match  between  the  modeling  and  numerical  simulations,  thus  validating  the  analytical
approach. 
Fig. 2 presents the time evolution of the porosity for the spherical loading condition, considering the
static case (micro-inertia is disregarded) and the case where micro-inertia is included. In our work, the
initial length of void L0 is varied in the range [1; 20,000] µm. One first notes the strong influence of
micro-inertia.  Indeed,  under  static  loading,  the  failure  is  occurring  at  a  critical  time

 This value is much lower than the critical time revealed when

local  dynamic  effects  are  included.  As  an  example,  the  complete  failure  occurs  at  920ns  when
L0=1000µm. This clearly illustrates the stabilizing effect of micro-inertia. Fig. 2 also reveals that the
time to failure is increased as L0 is increased. When L0 becomes large, the response is tending to the
case where D33=0. An asymptotic response is also revealed when L0 tends to zero. \
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Fig. 3 shows the time evolution of the macroscopic stress components   (prescribed) and

calculated from the theory Eq. (8) where plane strain case is adopted. Remind that if micro-inertia

is neglected,  coincide with   From Fig. 3, it appears that the magnitude of the stress

component  is increasing first,  reaches a maximum and then decreases. Note that this  time

evolution is confirmed by FE calculations. This finding, which could have been hardly anticipated
without the proposed analytical approach, clearly highlights the peculiar influence of the initial length
and the role of micro-inertia in the dynamic response of porous materials containing cylindrical voids.

Fig  2:  Porosity  versus  time  for  static  (micro-
inertia  neglected)  and  dynamic  approaches
(including micro-inertia)  for  L0=1 to 20,000µm.
Spherical loading is considered.

Fig  3:  Macroscopic  stress  components

 (prescribed)  and  (calculated)

versus  time  when  D33=0.  Micro-inertia  is
included.
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