CFM 2019

Reinforced concrete structural response under explosive loads
Androniki-Anna Doulgeroglou  1, 2, *@  , Panagiotis Kotronis  3@  , Giulio Sciarra  4@  , Abdul Hamid Soubra  5@  , Yves Jaboin  2@  
1 : Institut de Recherche en Génie Civil et Mécanique  (GeM)
Ecole Centrale de Nantes
2 : Groupe NOX
Groupe NOX
3 : Institut de Recherche en Génie Civil et Mécanique  (GeM)  -  Site web
Université de Nantes, Ecole Centrale de Nantes, Centre National de la Recherche Scientifique : UMR6183
1, rue de la Noë BP92101 44321 Nantes cedex 3 -  France
4 : École Centrale de Nantes  (ECN)
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
1 rue de la Noë - BP 92101 - 44321 Nantes cedex 3 -  France
5 : Professor
Université de Nantes, Université de Nantes
GeM, UMR CNRS 6183, Bd. de l'université, CS 70152, 44603 Saint-Nazaire cedex -  France
* : Auteur correspondant

The purpose is to numerically study the behavior of a reinforced concrete frame up to failure considering explosive loads. For this, a recently developed generalized Timoshenko beam with embedded rotation discontinuity is adopted.

This research is mainly based on the previous results of Bitar et al [1].Within the framework of the finite element matlab code developed by Bonnet & Frangi [2], beam elements that incorporate strong discontinuities were implemented [1] so that the softening behavior and the crack opening are described, using a cohesive law that allows for capturing strength reduction and energy release. In this work, we extend the cohesive law, considering a general non-linear relation, in order to represent cyclic loading. Similar modifications were made concerning the generalized constitutive law linking the bending moment with the rotation, representative of a reinforced concrete section.

Loading on the structure due to explosions is described by a suitable blast pressure dependency on time. An estimation of this pressure distribution is obtained using the methodology developed by the U.S. Army Corps of engineers [3]. The effects of the fluid structure interaction are not considered. The efficiency of the proposed model is validated by comparisons with literature results.

 

References

 [1] Bitar, I., Kotronis, P., Benkemoun, N., & Grange, S. (2018). A generalized Timoshenko beam with embedded rotation discontinuity. Finite Elements in Analysis and Design, 150, 34-50.

 [2] Bonnet Marc, & Frangi Attilio. (2006). Analyse des solides déformables par la méthode des éléments finis. [Palaiseau]: Ed. de l'École polytechnique.

 [3] US Department of Defense (DoD). (2008). Unified facilities criteria: Structures to resist the effects of accidental explosions.


Personnes connectées : 62