CFM 2019

Implementation of a reaction-diffusion process in Abaqus
Elisabeth Vasikaran  1@  , Yann Charles  1, *@  , Pierre Gilormini  2@  
1 : Université Paris 13,Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, UPR 3407  (LSPM-CNRS)
Université Paris-Nord - Paris XIII, CNRS : UPR3407
2 : Procedes et Ingenierie en Mécanique et Matériaux [Paris]  (PIMM)  -  Site web
Arts et Métiers ParisTech, Conservatoire National des Arts et Métiers (CNAM), CNRS : UMR8006, Conservatoire National des Arts et Métiers [CNAM]
151 boulevard de l'hôpital, 75013 Paris -  France
* : Auteur correspondant

The simulation of an in-service material behavior accounting for impurities leads to the introduction of complex couplings between mechanics and diffusive processes. The numerical treatment of these phenomena combined may be complex, especially when strong interactions are involved, as in the case of hydrogen embrittlement of metals (Hirth 1980), or in the effect of moisture on polymers (Sar et al. 2014), where molecules are absorbed, transported through the material, and trapped on specific sites, the density of which might be time and space dependent (McNabb and Foster 1963; Carter and Kibler 1978), e.g, due to plasticity in the case of hydrogen in metals (Sofronis and McMeeking 1989). Mechanical fields, furthermore, may be affected by theses impurities, because of induced deformations or modified mechanical properties (Bernstein 1970). 

If there are numerous works to account for such interactions in finite element codes (Charles, Nguyen, and Gaspérini 2017a; Charles, Nguyen, and Gaspérini 2017b), there are hardly few developments that include more than one diffusive species in the computations, especially in commercial softwares. However, such a feature could be of importance, e.g., to model the behavior of structures subjected to the presence of both impurities and temperature variations.

The aim of this work is thus to introduce original developments to introduce mechanical- multi -diffusion computations in Abaqus. 

The multi-diffusion implementation strategy is first presented. Some academic examples are then considered, mainly based on chemical reaction-diffusion processes (Gray and Scott 1983; Gray and Scott 1984).

 

Bernstein, I M. 1970. “The Role of Hydrogen in the Embrittlement of Iron and Steel.” Materials Science and Engineering: A 6 (1). Elsevier: 1–19. doi:10.1016/0025-5416(70)90073-X.

Carter, Harris G, and Kenneth G Kibler. 1978. “Langmuir-Type Model for Anomalous Moisture Diffusion in Composite Resins.” Journal of Composite Materials 12 (2): 118–31. doi:10.1177/002199837801200201.

Charles, Yann, Tuan Hung Nguyen, and Monique Gaspérini. 2017a. “FE Simulation of the Influence of Plastic Strain on Hydrogen Distribution During an U-Bend Test.” International Journal of Mechanical Sciences 120: 214–24. doi:10.1016/j.ijmecsci.2016.11.017.

Charles, Yann, Tuan Hung Nguyen, and Monique Gaspérini. 2017b. “Comparison of Hydrogen Transport Through Pre-Deformed Synthetic Polycrystals and Homogeneous Samples by Finite Element Analysis.” International Journal of Hydrogen Energy 42 (31). Elsevier Ltd: 20336–50. doi:10.1016/j.ijhydene.2017.06.016.

Gray, P, and S K Scott. 1983. “Autocatalytic Reactions in the Isothermal, Continuous Stirred Tank Reactor: Isolas and Other Forms of Multistability.” Chemical Engineering Science 38 (1). Pergamon: 29–43. doi:10.1016/0009-2509(83)80132-8.

Gray, P, and S K Scott. 1984. “Autocatalytic Reactions in the Isothermal, Continuous Stirred Tank Reactor: Oscillations and Instabilities in the System a + 2B → 3B; B → C.” Chemical Engineering Science 39 (6). Pergamon: 1087–97. doi:10.1016/0009-2509(84)87017-7.

Hirth, John P. 1980. “Effects of Hydrogen on the Properties of Iron and Steel.” Metallurgical Transactions A 11 (6). Springer-Verlag: 861–90. doi:10.1007/BF02654700.

McNabb, A, and P K Foster. 1963. “A New Analysis of the Diffusion of Hydrogen in Iron and Ferritic Steels.” Transactions of the Metallurgical Society of AIME 227 (3). Trans. Metall. Soc. AIME: 618–27.

Sar, B E, S Fréour, A Célino, and F Jacquemin. 2014. “Accounting for Differential Swelling in the Multi-Physics Modeling of the Diffusive Behavior of a Tubular Polymer Structure.” Journal of Composite Materials 49 (19): 2375–87. doi:10.1177/0021998314546704.

Sofronis, Petros, and R M McMeeking. 1989. “Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip.” Journal of the Mechanics and Physics of Solids 37 (3): 317–50. doi:http://dx.doi.org/10.1016/0022-5096(89)90002-1.


Personnes connectées : 61